• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Nanocrystals from recycled wood waste make carbon-fiber composites tougher

Bioengineer by Bioengineer
August 11, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr. Amir Asadi/Texas A&M University College of Engineering

Polymers reinforced with ultra-fine strands of carbon fibers epitomize composite materials that are “light as a feather and strong as steel,” earning them versatile applications across several industries. Adding materials called carbon nanotubes can further enhance the composites’ functionality. But the chemical processes used for incorporating carbon nanotube end up spreading them unevenly on the composites, limiting the strength and other useful qualities that can be ultimately achieved.

In a new study, Texas A&M University researchers have used a natural plant product, called cellulose nanocrystals, to pin and coat carbon nanotubes uniformly onto the carbon-fiber composites. The researchers said their prescribed method is quicker than conventional methods and also allows the designing of carbon-fiber composites from the nanoscale.

The results of the study are published online in the journal American Chemical Society (ACS) Applied Nano Materials.

Composites are built in layers. For example, polymer composites are made of layers of fiber, like carbon fibers or Kevlar, and a polymer matrix. This layered structure is the source of the composites’ weakness. Any damage to the layers causes fractures, a process technically known as delamination.

To increase strength and give carbon-fiber composites other desirable qualities, such as electrical and thermal conductivity, carbon nanotubes are often added. However, the chemical processes used for incorporating the carbon nanotubes into these composites often cause the nanoparticles to clump up, reducing the overall benefit of adding these particles.

“The problem with nanoparticles is similar to what happens when you add coarse coffee powder to milk — the powder agglomerates or sticks to each other,” said Dr. Amir Asadi, assistant professor in the Department of Engineering Technology and Industrial Distribution. “To fully take advantage of the carbon nanotubes, they need to be separated from each other first, and then somehow designed to go to a particular location within the carbon-fiber composite.”

To facilitate the even distribution of carbon nanotubes, Asadi and his team turned to cellulose nanocrystals, a compound easily obtained from recycled wood pulp. These nanocrystals have segments on their molecules that attract water and other segments that get repelled by water. This unique molecular structure offers the ideal solution to construct composites at the nanoscale, said Asadi.

The hydrophobic part of the cellulose nanocrystals binds to the carbon fibers and anchors them onto the polymer matrix. On the other hand, the water-attractive portions of the nanocrystals help in dispersing the carbon fibers evenly, much like how sugar, which is hydrophilic, dissolves in water uniformly rather than clumping and settling to the bottom of a cup.

For their experiments, the researchers used a commercially available carbon-fiber cloth. To this cloth, they added an aqueous solution of cellulose nanocrystals and carbon nanotubes and then applied strong vibration to mix all of the items together. Finally, they left the material to dry and spread resin on it to gradually form the carbon nanotube coated polymer composite.

Upon examining a sample of the composite using electron microscopy, Asadi and his team observed that the cellulose nanocrystals attached to the tips of the carbon nanotubes, orienting the nanotubes in the same direction. They also found that cellulose nanocrystals increased the composite’s resistance to bending by 33% and its inter-laminar strength by 40% based on measuring the mechanical properties of the material under extreme loading.

“In this study, we have taken the approach of designing the composites from the nanoscale using cellulose nanocrystals. This method has allowed us to have more control over the polymer composites’ properties that emerge at the macroscale,” said Asadi. “We think that our technique is a path forward in scaling up the processing of hybrid composites, which will be useful for a variety of industries, including airline and automobile manufacturing.”

###

Other contributors to this research include Shadi Shariatnia and Annuatha V. Kumar from the J. Mike Walker ’66 Department of Mechanical Engineering, and Ozge Kaynan from the Department of Materials Science and Engineering.

Media Contact
Amy Halbert
[email protected]

Original Source

https://engineering.tamu.edu/news/2020/08/nanocrystals-from-recycled-wood-waste-make-carbon-fiber-composites-tougher.html

Related Journal Article

http://dx.doi.org/10.1021/acsanm.0c00785

Tags: Chemistry/Physics/Materials SciencesNanotechnology/MicromachinesPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

November 5, 2025
Co-electroreduction of CO and Glyoxal Yields C3 Products

Co-electroreduction of CO and Glyoxal Yields C3 Products

November 5, 2025

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025

Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CRISPR Screen Uncovers Novel Regulator of Androgen Receptor in Prostate Cancer

Breakthrough Discovery Uncovers Bowel Cancer’s “Big Bang” Moment

Decoding How Viruses Outperform Expectations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.