• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Investigating a thermal challenge for MOFs

Bioengineer by Bioengineer
August 11, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research in Nature Communications examines thermal transport in metal organic frameworks

IMAGE

Credit: Christopher E. Wilmer / University of Pittsburgh

To the naked eye, metal organic frameworks (MOFs) look a little like sand. But if you zoom in, you will see that each grain looks and acts more like a sponge–and serves a similar purpose. MOFs are used to absorb and hold gases, which is useful when trying to filter toxic gases out of the air or as a way to store fuel for natural gas- or hydrogen gas-powered engines.

New research led by an interdisciplinary team across six universities examines heat transfer in MOFs and the role it plays when MOFs are used for storing fuel. Corresponding author Christopher Wilmer, William Kepler Whiteford Faculty Fellow and assistant professor of chemical and petroleum engineering at the University of Pittsburgh’s Swanson School of Engineering, coauthored the work with researchers at Carnegie Mellon University, the University of Virginia, Old Dominion University, Northwestern University, and the Karlsruhe Institute of Technology in Karlsruhe, Germany. The findings were recently published in Nature Communications.

“One of the challenges with using MOFs for fuel tanks in cars is that you have to be able to fill up in a few minutes or less,” explains Wilmer. “Unfortunately, when you quickly fill these MOF-based tanks with hydrogen or natural gas they get very hot. It’s not so much a risk of explosion–though there is one–but the fact that they can’t store much gas when they’re hot. The whole premise of using them to store a lot of gaseous fuel only works at room temperature. For other industrial applications you face a similar problem – whenever gases are loaded quickly the MOFs become hot and no longer work effectively.”

In other words, for MOFs to be useful for these applications, they would need to be kept cool. This research looked at thermal transport in MOFs, to explore how quickly they can shed excess heat, and the group found some surprising results.

“When you take these porous materials, which to begin with are thermally insulating, and you fill them with gas, it appears that they become even more insulating. This is surprising because usually, empty pockets like those in insulation or double-paned windows provide good thermal insulation,” explains Wilmer. “By taking porous materials and filling them, thereby removing those gaps, you would expect the thermal transport to improve, making it more thermally conductive. The opposite happens; they become more insulating.”

To reach their conclusion, researchers conducted two simultaneous experiments using two different methods and MOFs synthesized in two different labs. Both groups observed the same trend: that the MOFs become more insulated when filled with adsorbates. Their experimental findings were also validated by atomistic simulations at Pitt in collaboration with Carnegie Mellon University.

“Our work indicates potential challenges ahead for the use of MOFs outside of research labs, but that is a necessary step in the process,” says Alan McGaughey, professor of mechanical engineering at Carnegie Mellon. “As these materials advance toward broad, real-world usage, researchers will need to continue investigating once-overlooked properties of these materials, like thermal transport, and find the best way to use them to fit our needs.”

###

The paper, “Observation of Reduced Thermal Conductivity in a Metal-Organic Framework,” (DOI: 10.1038/s41467-020-17822-0) was published in Nature Communications. Coauthors include Hasan Babaei (Pitt), Mallory E. DeCoster (UVA), Minyoung Jeong (CMU), Zeinab M. Hassan (KIT), Timur Islamoglu (Northwestern), Helmut Baumgart (Old Dominion), Alan J. H. McGaughey (CMU), Redel Engelbert (KIT), Omar K. Farha (Northwestern), Patrick E. Hopkins (UVA), Jonathan A. Malen (CMU), and Christopher E. Wilmer.

Acknowledgements

H.B. and C.E.W. gratefully acknowledge support from the National Science Foundation (NSF), awards CBET-1804011 and OAC-1931436, and also thank the Center for Research Computing (CRC) at the University of Pittsburgh for providing computational resources. J.A.M. gratefully acknowledges support from the Army Research Office, grant W911NF-17-1-0397. A.J.H.M. gratefully acknowledges support from the NSF, award DMR-1507325. O.K.F. gratefully acknowledges support from the Defense Threat Reduction Agency, HDTRA1?18?1?0003. P.E.H. appreciates support from the Army Research Office, Grant. No. W911NF-16-1-0320. Financial support by Deutsche Forschungsgemeinschaft (DFG) within the COORNET Priority Program (SPP 1928) is gratefully acknowledged by E.R. and He.B. (Helmut Baumgart). Z.M.H. acknowledges financial support from the Egyptian Mission Foundation. We would also like to thank Ran Cao for collecting additional PXRD data for this study.

Media Contact
Maggie Pavlick
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-17822-0

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)Nanotechnology/MicromachinesResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025
blank

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    104 shares
    Share 42 Tweet 26
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    102 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanoemulsion Boosts Pomegranate Polysaccharides’ Anti-Tumor Power

Neurogenic Organ Dysfunction Post Acute Brain Injury

Identifying Recurrence and Scarring After Infant UTIs

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.