• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Alteration of calcium channel signaling may explain mechanism of autism spectrum disorder

Bioengineer by Bioengineer
August 3, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How does the G406R single point mutation of the Cav1.2 channel affect cellular processes that could lead to a multifactorial disease such as autism?

IMAGE

Credit: Credit: Smadar Bergman

Autism spectrum disorder (ASD) is a heterogeneous disorder initiated early in development and characterized by abnormal social communication. Accumulating evidence supports the idea that specific mutations affect regulatory proteins that control arrays of cellular pathways.

A special case of autism is known as the Timothy Syndrome (TS) caused by a point mutation in the alternatively spliced exon 8A of the calcium channel Cav1.2. TS is a multisystem disorder characterized also by cardiac dysfunction, causing sudden death from cardiac arrhythmias.

There are two Timothy mutations, G406R and G402S that occur at the calcium channel Cav1.2. These two mutations modify the inactivation kinetics of the channel and by reducing voltage-dependent inactivation, causing an abnormal calcium overload leading to heart problems such as prolonged QT interval and cardiac arrhythmia. Surprisingly, only the G406R mutation is associated with ASD in 4 out of 5 patients carrying the mutation, while the G402S mutation fails to express the autistic phenotype.

The study sought to answer the question: How does the G406R single point mutation of the Cav1.2 channel affect cellular processes that could lead to a multifactorial disease such as autism? It is known that Cav1.2 and other calcium channels induce gene activation, which is responsible for long-term processes, such as neurodevelopmental disorders, cognitive setbacks, and psychiatric disorders including schizophrenia, bipolar disorder and autism.

The researchers, led by Professor Daphne Atlas at the Hebrew University of Jerusalem’s Alexander Silberman Institute of Life Sciences, found that both the Cav1.2 Timothy channel mutants G406R and G402S, activate gene programs (transcriptional activity) via the Ras/ERK/CREB cellular pathway, similar to the native (non-mutated) calcium channel Cav1.2. “We were surprised and thrilled to discover that the autistic mutant G406R exhibits a constitutive (spontaneous) transcriptional activation and the G402S mutation does not.” This difference might clarify a mechanism that could explain why G406R mutation confers autism whereas G402S does not “shared Atlas.

It is known that in addition to modifying channel inactivation, the two variants of the Timothy channel differ in their activation kinetics. The G406R mutation causes specific gain-of-function changes in Cav1.2 channel gating, exhibiting a “leftward shift” of voltage-dependent activation and G402S does not. This leftward shift facilitates channel activity even at resting potentials, which means that the channel is spontaneously active, as opposed to the G402S mutant.

The research findings of facilitated spontaneous activity of the G406R channel correlates with a constitutive gene activation. This uncontrolled spontaneous gene activation, imposed by a leftward voltage-shift in the activation kinetics of the channel, implies a mechanism of conferring autism. The induction of uncontrolled long-term dysregulations such as autism by facilitated spontaneous activity of the channel and subsequently spontaneous gene activation can be compared to a dripping faucet.

These results were further supported through screening the literature for channel mutants that are associated with long-term abnormalities. All mutated channels that display a leftward-shift in channel activation are associated with long-term dysregulations. These findings imply that channel mutants that exhibit a facilitated channel activity at rest–with no stimulation–imposed by a negative shift in channel gating, are likely to exhibit a spontaneous and uncontrolled gene activation, similar to the Timothy mutant.

“Further studies are required to establish whether the uncontrolled activity of the channel at rest, which is associated with uncontrolled activation of gene programs in Timothy G406R mutant, is the underlying a mechanism by which other mutated channels confer a high risk for neurodevelopmental disorders in humans,” explained Atlas.

Based on altering calcium channel kinetics and gene activation exhibited by the Timothy mutant, these results provide insight into the cellular mechanism that allows predicting disease risk, and genetic diagnosis of individuals with neurodevelopmental disorders.

###

The study was published in Progress in Neurobiology. It is part of a PhD thesis by Evrim Servili and was done in collaboration with fellow HU colleagues, Drs. Michael Trus, Eilon Sherman and Julia Sajman.

Media Contact
Tali Aronsky
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.pneurobio.2020.101820

Tags: GeneticsMedicine/HealthneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

Supersolid Spins Synchronize in Unison

Supersolid Spins Synchronize in Unison

October 23, 2025
blank

Golden Platform Unveils the Hidden Forces of Nature’s Invisible Glue

October 23, 2025

Nano-biochar Enables Rice Roots to Convert Toxic Silver Ions into Safer Nanoparticles

October 23, 2025

Neutrino ‘Flavors’ Could Unlock the Universe’s Greatest Mysteries

October 22, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1276 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    307 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    159 shares
    Share 64 Tweet 40
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Lipid Nanoparticle Structure via Biophysics

Improving Neonatal Vascular Access with 7-Rights Framework

Psoriasis-Associated Gene Mutation Found to Affect Gut Health

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.