• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Deadly genetic synergy in cancer cells could be exploited for therapy

Bioengineer by Bioengineer
July 28, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Ludwig Cancer Research

JULY 27, 2020, NEW YORK — A Ludwig Cancer Research study has identified a new instance in which the simultaneous mutation of two nonessential genes–neither of which is on its own vital to cell survival–can cause cancer cell death.

Led by Ludwig San Diego Member Richard Kolodner and published in the current Proceedings of the National Academy of Sciences, the study also demonstrates that this deadly synergy, or “synthetic lethality,” can be replicated by a drug-like molecule and could be exploited for cancer therapy.

The development and FDA approval of a new generation of drugs, called PARP inhibitors, to treat malignancies with defects in the tumor suppressor genes BRCA1 and BRCA2, which are implicated in breast, ovarian and many other types of cancers, has generated considerable interest in exploiting synthetic lethal interactions for the development of cancer therapies.

Scientists, including Kolodner’s group, are on the hunt for other synthetic lethal interactions in cancers. “PARP inhibitors are a great advance, but they’re not perfect,” says Kolodner. “Patients can become resistant to them, so there’s always a need for newer and better treatments.”

Building from studies conducted on yeast cells, Kolodner and colleagues discovered that disabling or removing FEN1, a mammalian gene that is important for DNA replication and repair, is detrimental to cancer cells with mutant forms of BRCA1 and 2.
“We’ve provided data that should make people consider FEN1 as a potentially interesting therapeutic target and demonstrated how yeast can be used to predict a whole range of synthetic lethal interactions, which can then be validated in bona fide cancer cell lines with genetic tools,” says Kolodner.

In previous work using the yeast Saccharomyces cerevisiae as a model to identify and study genes that support the integrity of the genome, Kolodner and his colleagues found that the RAD27 gene has synthetic lethal interactions with 59 other non-essential yeast genes. Two such genes of note are RAD51 and RAD52, which play roles in DNA recombination.

FEN1 is a close counterpart, or homolog, of RAD27 in mammals. Based on their yeast studies, Kolodner and colleagues predicted that FEN1 would have synthetic lethal interactions with BRCA1 and BRCA2, which function in the same biochemical pathway in mammals as RAD51 and RAD52 do in yeast.

To test this hypothesis, they synthesized four FEN1-blocking molecules and used the best of them, C8, to suppress FEN1 activity in cancer cell lines with or without BRCA mutations. C8 turned out to be an effective killer of BRCA-mutant cells.

They then demonstrated that genetic disruption of FEN1 expression had the same effects as C8 did on BRCA-mutant cells, confirming that C8 worked by inducing synthetic lethality.

Finally, the scientists grafted C8-sensitive and C8-resistant tumors into mice and showed that C8 significantly inhibited the growth of the C8-sensitive tumors but not the C8-resistant tumors. Interestingly, not all the cancer cell lines and tumors that responded to C8 treatment were BRCA deficient, indicating that FEN1 has synthetical lethal interactions with other genes as well.

These findings identify FEN1 as a novel target for drugs to treat a variety of malignancies by the induction of synthetic lethality. They also demonstrate that yeast-based screens are a powerful tool for accelerating the discovery of synthetic lethal interactions of potential therapeutic value–an ongoing project in the Kolodner laboratory.

###

Aside from his Ludwig post, Richard Kolodner is also a professor of cellular and molecular medicine at the University of California, San Diego.

This study was supported by Ludwig Cancer Research and the U.S. National Institutes of Health.

About Ludwig Cancer Research

Ludwig Cancer Research is an international collaborative network of acclaimed scientists that has pioneered cancer research and landmark discovery for nearly 50 years. Ludwig combines basic science with the ability to translate its discoveries and conduct clinical trials to accelerate the development of new cancer diagnostics and therapies. Since 1971, Ludwig has invested $2.7 billion in life-changing science through the not-for-profit Ludwig Institute for Cancer Research and the six U.S.-based Ludwig Centers. To learn more, visit http://www.ludwigcancerresearch.org.

For further information please contact Rachel Reinhardt, [email protected] or +1-212-450-1582.

Media Contact
Rachel Reinhardt
[email protected]

Tags: cancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Mapping Lymph Node Metastasis in Lung Adenocarcinoma

October 15, 2025

Fasting Reduces Liver Cancer Cell Growth and Alters Proteome

October 15, 2025

Turning Clinical Guidelines into Action in Primary Care

October 15, 2025

Theory-Based Activity Cuts Childhood Obesity: Review

October 15, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1243 shares
    Share 496 Tweet 310
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mapping Lymph Node Metastasis in Lung Adenocarcinoma

Fasting Reduces Liver Cancer Cell Growth and Alters Proteome

Turning Clinical Guidelines into Action in Primary Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.