• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Tandem catalytic system efficiently converts carbon dioxide to methanol

Bioengineer by Bioengineer
July 24, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Encapsulating multiple molecular catalysts in nanoporous metal-organic frameworks central to efficient transformation

IMAGE

Credit: Frank Tsung

Chestnut Hill, Mass. (7/24/2020) – Converting carbon dioxide to methanol, a potentially renewable alternative fuel, offers an opportunity to simultaneously form an alternative fuel and cut down on carbon dioxide emissions.

Inspired by naturally occurring processes, a team of Boston College chemists used a multi-catalyst system to convert carbon dioxide to methanol at the lowest temperatures reported with high activity and selectivity, the researchers reported in a recent online edition of the journal Chem.

The team’s discovery was made possible by installing multiple catalysts in a single system constructed within a sponge-like porous crystalline material known as a metal-organic framework, said Boston College Associate Professors of Chemistry Jeffery Byers and Frank Tsung, lead authors of the report.

Held in place by the sponge, the separate catalysts work in harmony. Without isolation of the catalytically active species in this way, the reaction did not proceed and no product was obtained, they reported.

The team drew its inspiration from the biological machinery in cells, which use multicomponent chemical reactions with great efficiency, Tsung said.

The team employed catalyst separation through host-guest chemistry – where a “guest” molecule is encapsulated in a “host” material to form a new chemical compound – in order to convert carbon dioxide to methanol. The approach, inspired by the multicomponent catalytic transformations in nature, converted a greenhouse gas to a renewable fuel while avoiding high catalytic demand on a single species.

“We accomplished this by encapsulating one or more catalysts in metal-organic framework and applying the resulting host-guest construct in catalysis in tandem with another transition metal complex,” said Tsung.

The team, which included graduate student Thomas M. Rayder and undergraduate Enric H. Adillon, set out to determine whether they could develop an approach to integrate incompatible catalysts in order to convert carbon dioxide to methanol at low temperature and with high selectivity, said Byers.

Specifically, they wanted to find out if there are specific advantages to this approach when compared to current state of the art systems for transition metal complex-based conversion of carbon dioxide to methanol.

“Positioning multiple transition metal complex catalysts at the right position in a system is critical to the reaction turning over,” said Byers. “At the same time, encapsulating these catalysts allowed for recyclability in the multicomponent catalytic system.”

These properties make the multicomponent catalyst construct more industrially relevant, which may pave the way for a carbon-neutral fuel economy, the researches said.

In addition to achieving site isolation by encapsulating the catalysts, which led to catalyst activity and recyclability, the team discovered an autocatalytic feature of the catalyst that enabled the reaction to be run without the need for large amounts of additives. Most previous reports for similar reactions use large amounts of additives, but the team’s approach avoids this necessity and it is the first to use carbon dioxide in an energy-related reaction, Tsung said.

The team plans to do further research into the modularity of both the encapsulation method and the metal-organic frameworks to gain a deeper understanding of the multicomponent system and optimize it further, as well as access new, unexplored reactivity through the formation of new host-guest constructs, Tsung said.

###

Media Contact
Ed Hayward
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.chempr.2020.04.008

Tags: Chemistry/Physics/Materials SciencesEnergy/Fuel (non-petroleum)
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.