• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Highly stable amyloid protein aggregates may help plant seeds last longer

Bioengineer by Bioengineer
July 23, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr. Pavel Zykin

Highly stable polymeric “amyloid” proteins, best known for their role in Alzheimer’s disease, have been mostly studied in animals. But a new study on the garden pea publishing July 23, 2020 in the open-access journal PLOS Biology, by Anton Nizhnikov of All-Russia Research Institute for Agricultural Microbiology (ARRIAM) and colleagues, shows that they also occur in plants, and they may be an important adaptation for prolonging seed viability.

Amyloid is a type of protein conformation in which adjacent sheets of amino acids are bound together to form aggregates that are highly resistant to degradation. In animals, amyloids play roles in hormone storage and long-term memory formation, among other activities, but are best known from Alzheimer’s disease, which is characterized by the formation of plaques of amyloid aggregates in the brain.

Direct evidence that plants form amyloids has been limited, but recent biochemical experiments have hinted at it, and a recent bioinformatic study led by Nizhnikov turned up a group of seed storage proteins with amino acid sequences that suggested they might be able to form amyloids.

In the new study, working in the garden pea, the researchers extracted the seed storage proteins, including one called vicilin, and analyzed both the full-length protein and two its domains called cupins that are rich in predicted amyloidogenic regions. When the genes were engineered into bacteria, all three proteins formed amyloid fibrils resistant to strong detergents; they also bound amyloid-specific dyes, and displayed unique spectral properties, all indicative of bona fide amyloid structure.

In vivo, in the pea seed, the authors used an amyloid-specific dye and an antibody to vicilin to show that the two co-localized–where there was vicilin, there was amyloid-specific dye. Vicilin amyloid aggregates built up in the storage vacuoles during seed maturation, and then rapidly disassembled during germination, suggesting their role is as a nutrient reservoir. They also found that vicilin amyloids survived intact in canned peas, resisted treatment with protein-digesting gastrointestinal enzymes, and were toxic to yeast and mammalian cells.

“Amyloids are highly stable protein structures that resist different treatments and can, in several cases, persist in the external environment for decades,” Nizhnikov said. “Amyloid formation seems to be reasonable as evolutionary adaptation to provide for the long-term survival of plant seeds.”

###

Peer reviewed; Experimental study; Plants

In your coverage please use this URL to provide access to the freely available article in PLOS Biology: https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000564

Citation: Antonets KS, Belousov MV, Sulatskaya AI, Belousova ME, Kosolapova AO, Sulatsky MI, et al. (2020) Accumulation of storage proteins in plant seeds is mediated by amyloid formation. PLoS Biol 18(7): e3000564. https://doi.org/10.1371/journal.pbio.3000564

Funding: This work (study of amyloid formation by Vicilin and its domains in vivo and in vitro) was supported by the Russian Science Foundation, grant 17-16-01100. Part of this work performed by A.I. Sulatskaya (analysis of polymorphism of protein aggregates under various conditions) was awarded by RF President Fellowship SP-841.2018.4. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact
Anton A. Nizhnikov
[email protected]

Related Journal Article

http://dx.doi.org/10.1371/journal.pbio.3000564

Tags: AgricultureBiochemistryBiologyCell BiologyFood/Food ScienceMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

UVA Engineering Polymer Scientist Honored with American Physical Society’s John H. Dillon Medal

November 6, 2025
Glassy Metal-Organic Frameworks Pave the Way for Fast-Charging Lithium-Ion Batteries

Glassy Metal-Organic Frameworks Pave the Way for Fast-Charging Lithium-Ion Batteries

November 6, 2025

Affordable Coal and Waste Plastics Transformed into High-Value Carbon Fibers

November 6, 2025

UNH Scientists Leverage AI to Uncover New Magnetic Materials

November 6, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1300 shares
    Share 519 Tweet 325
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Molecular Profiling Reveals Prostate Cancer Stromal Vulnerabilities

Exploring the Brain: A Revolutionary 3D Atlas of Neural Connections

Tuberculosis Spread in China: COVID-19 Impact (2020–21)

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.