• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Quantum physicists crack mystery of ‘strange metals,’ a new state of matter

Bioengineer by Bioengineer
July 23, 2020
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Strange metals have surprising connections to high-temperature superconductors and black holes

IMAGE

Credit: P. Cha et al./Proceedings of the National Academy of Sciences 2020

Even by the standards of quantum physicists, strange metals are just plain odd. The materials are related to high-temperature superconductors and have surprising connections to the properties of black holes. Electrons in strange metals dissipate energy as fast as they’re allowed to under the laws of quantum mechanics, and the electrical resistivity of a strange metal, unlike that of ordinary metals, is proportional to the temperature.

Generating a theoretical understanding of strange metals is one of the biggest challenges in condensed matter physics. Now, using cutting-edge computational techniques, researchers from the Flatiron Institute in New York City and Cornell University have solved the first robust theoretical model of strange metals. The work reveals that strange metals are a new state of matter, the researchers report July 22 in the Proceedings of the National Academy of Sciences.

“The fact that we call them strange metals should tell you how well we understand them,” says study co-author Olivier Parcollet, a senior research scientist at the Flatiron Institute’s Center for Computational Quantum Physics (CCQ). “Strange metals share remarkable properties with black holes, opening exciting new directions for theoretical physics.”

In addition to Parcollet, the research team consisted of Cornell doctoral student Peter Cha, CCQ associate data scientist Nils Wentzell, CCQ director Antoine Georges, and Cornell physics professor Eun-Ah Kim.

In the quantum mechanical world, electrical resistance is a byproduct of electrons bumping into things. As electrons flow through a metal, they bounce off other electrons or impurities in the metal. The more time there is between these collisions, the lower the material’s electrical resistance.

For typical metals, electrical resistance increases with temperature, following a complex equation. But in unusual cases, such as when a high-temperature superconductor is heated just above the point where it stops superconducting, the equation becomes much more straightforward. In a strange metal, electrical conductivity is linked directly to temperature and to two fundamental constants of the universe: Planck’s constant and Boltzmann’s constant. Consequently, strange metals are also known as Planckian metals.

Models of strange metals have existed for decades, but accurately solving such models proved out of reach with existing methods. Quantum entanglements between electrons mean that physicists can’t treat the electrons individually, and the sheer number of particles in a material makes the calculations even more daunting.

Cha and his colleagues employed two different methods to crack the problem. First, they used a quantum embedding method based on ideas developed by Georges in the early ’90s. With this method, instead of performing detailed computations across the whole quantum system, physicists perform detailed calculations on only a few atoms and treat the rest of the system more simply. They then used a quantum Monte Carlo algorithm (named for the Mediterranean casino), which uses random sampling to compute the answer to a problem. The researchers solved the model of strange metals down to absolute zero (minus 273.15 degrees Celsius), the unreachable lower limit for temperatures in the universe.

The resulting theoretical model reveals the existence of strange metals as a new state of matter bordering two previously known phases of matter: Mott insulating spin glasses and Fermi liquids. “We found there is a whole region in the phase space that is exhibiting a Planckian behavior that belongs to neither of the two phases that we’re transitioning between,” Kim says. “This quantum spin liquid state is not so locked down, but it’s also not completely free. It is a sluggish, soupy, slushy state. It is metallic but reluctantly metallic, and it’s pushing the degree of chaos to the limit of quantum mechanics.”

The new work could help physicists better understand the physics of higher-temperature superconductors. Perhaps surprisingly, the work has links to astrophysics. Like strange metals, black holes exhibit properties that depend only on temperature and the Planck and Boltzmann constants, such as the amount of time a black hole ‘rings’ after merging with another black hole. “The fact that you find this same scaling across all these different systems, from Planckian metals to black holes, is fascinating,” Parcollet says.

###

ABOUT THE FLATIRON INSTITUTE

The Flatiron Institute is the research division of the Simons Foundation. The institute’s mission is to advance scientific research through computational methods, including data analysis, theory, modeling and simulation. The institute’s Center for Computational Quantum Physics aims to develop the concepts, theories, algorithms and codes needed to solve the quantum many-body problem and to use the solutions to predict the behavior of materials and molecules of scientific and technological interest.

Media Contact
Anastasia Greenebaum
[email protected]

Original Source

https://www.simonsfoundation.org/2020/07/22/quantum-physicists-crack-mystery-of-strange-metals-a-new-state-of-matter

Related Journal Article

http://dx.doi.org/10.1073/pnas.2003179117

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

August 15, 2025
Efficient Framework Models Ionic Materials’ Surface Chemistry

Efficient Framework Models Ionic Materials’ Surface Chemistry

August 15, 2025

Discovery of Intrinsic HOTI-Type Topological Hinge States in Photonic Metamaterials

August 15, 2025

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.