• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Putting the spring-cam back into stroke patients steps

Bioengineer by Bioengineer
July 22, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Tohoku University

A research group has developed a new, lightweight and motor-less device that can be easily attached to an ankle support device – otherwise known as an ankle foot orthosis (AFO). The new device will aid stroke patients in their rehabilitation, improving their walking and preventing falls.

Stroke patients often suffer from motor paralysis as a result of damage to the brain, significantly affecting their walking. Gaits disorder, as it is otherwise known, results in restrictive disabilities and increased health care costs.

Rehabilitation is key to stroke recovery. Yet around 40% of stroke patients struggle to function properly due to problems with their walking abilities.

One part of the problem is due to insufficient knee bending, or knee flexion, during walking. This leads to lower toe clearance – the distance between the toe and the ground when the foot swings forward – and causes patients to fall. To overcome this, patients frequently hip hike on the affected side, a process by which the patient elevates one side of their hip to move their foot. This makes patients walking movement awkward and decreases their motivation in rehabilitation.

Comprised of Professor Shin-Ichi Izumi and Associate Professor Dai Owaki from Tohoku University’s Graduate Schools of Medicine and Graduate School of Engineering along with Mr. Takeo Nozaki and Dr. Ken-ichiro Fukushi from NEC Corporation, the research group created a device which gives the ankle greater push-off power using a spring-cam mechanism. The elliptical shaped cam rotates in conjunction with the AFO, pushing against the spring. The resultant reactive force from the spring generates significant ankle push-off power.

The research group conducted clinical experiments on 11 stroke patients with paralysis on one side of the body, demonstrating that the device generated greater ankle power. This in turn aided knee flexion whilst the affected foot was in the swing phase of walking – i.e. when the foot is raised in the air.

“Our device will pave the way for positive impacts on the rehabilitation of stroke patients,” said Associate Professor Owaki. He adds, “It will prevent falls and make patients feel more confident in their walking abilities.”

###

Media Contact
Dai Owaki
[email protected]

Original Source

https://www.tohoku.ac.jp/en/press/putting_the_spring_back_into_stroke_patients_steps.html

Related Journal Article

http://dx.doi.org/10.1016/j.gaitpost.2020.06.029

Tags: Medicine/HealthTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

TMolNet: Revolutionizing Molecular Property Prediction

September 21, 2025

NICU Families’ Stories Through Staff Perspectives

September 21, 2025

CT Scans in Kids: Cancer Risk Insights

September 20, 2025

Revealing Tendon Changes from Rotator Cuff Tears

September 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    49 shares
    Share 20 Tweet 12
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Sustainable Construction: The Role of Cardboard and Earth

TMolNet: Revolutionizing Molecular Property Prediction

NICU Families’ Stories Through Staff Perspectives

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.