• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Signal transduction in cells: Precise or economical?

Bioengineer by Bioengineer
July 20, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A cellular signalling cascade balances information transmission against energy consumption

IMAGE

Credit: Max Planck Institute for Terrestrial Microbiology/Sourjik

Cellular signal transmission is not only optimized for precision – it also includes a cost cap. The relationship between information and energy, a concept well established in physics and engineering, is likely to fundamentally shape cellular signalling networks. One of the questions addressed by researchers at the Max Planck Institute for Terrestrial Microbiology, headed by biophysicist Victor Sourjik, is: What enables reliable transmission of signals in the “noisy” cellular environment? The research team is studying signal transmission in baker’s yeast (Saccharomyces cerevisiae), combining information theoretical approaches with quantitative experiments.

Precise signaling is crucial for the fitness of every living organism: whether during development or while communicating with a possible mating partner, only accurate transmission of received signals enables cells to trigger appropriate responses. In biological systems, random fluctuations of signals always lead to background noise, which can impede cell communication. Organisms must therefore have developed strategies to improve the accuracy of signal transmission in the presence of such interference. However, little is yet known about how noise suppression is achieved in cellular networks.

The pheromone signalling pathway of baker’s yeast belongs to a class of MAPK (mitogen-activated protein kinase) signalling pathways, which in eukaryotes commonly play a key role in the transmission and translation of extracellular stimuli into intracellular responses such as cell differentiation, proliferation or stress responses.

That the pheromone signalling pathway of yeast contains negative feedback regulations could be seen as clear indication of selection for increased accuracy. Surprisingly, however, both theoretical and experimental analyses of the signalling pathway showed that its accuracy could be easily further improved by increasing the sensitivity of one of the negative feedbacks. So why this discrepancy between the potentially more efficient hypothetical and the natural design? In other words, why didn’t yeast naturally optimize the system this way?

Costs versus benefits

The answer seems to lie in the cellular economics. The discrepancy disappears when the energy investment in the operation of the signalling pathway is also considered. “We were able to show that the core of the MAPK signalling pathway, the phosphorylation cycle, has measurable fitness costs. When these are taken into account, and the accuracy of the signal transduction is weighed against the energetic costs of the signalling pathway operation, the naturally observed design appears optimal,” explains Alexander Anders, first author of the current publication.

“Here we observe a relation between information and energy, analogous to what is well established in physics and engineering sciences.” says Victor Sourjik. “In biology, little attention has been paid to this interplay so far. Our work suggests that cost-benefit trade-off in information transfer must have been important in the evolution of cellular signalling systems. This helps us to better understand the evolutionary optimization of cellular signalling networks.” How biology has solved this fundamental dilemma of information costs in other cases remains to be elucidated.

###

Original Publication

Anders, A., Ghosh, B., Glatter, T. et al. Design of a MAPK signalling cascade balances energetic cost versus accuracy of information transmission.
Nat Commun 11, 3494 (2020)

Media Contact
Dr. Virginia Geisel
[email protected]

Original Source

https://www.mpg.de/15150789/precise-or-economical

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-17276-4

Tags: BiologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.