• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

How much fluorine is too much fluorine?

Bioengineer by Bioengineer
July 15, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: James Hanly

For most of us, our closest encounter with the element fluorine is likely to be our toothpaste or a municipal water supply with added fluoride.

But excess fluorine can be a problem. For example, high levels of fluorine in the soil can hurt plants. Fluorine in soils may also affect microbes and other organisms higher along the food chain.

A new study explored whether soil fluorine levels in New Zealand are high enough to hurt a specific microbe called Rhizobium.

Rhizobium bacteria live in root nodules of legume plants, like beans and lentils. These bacteria ‘fix’ atmospheric nitrogen, making the nutrients into a form the host plant can use.

Nitrogen fixation by Rhizobia means farmers need to use less nitrogen fertilizer. That can save significant costs.

If soil fluorine levels become high enough to hurt Rhizobia, it could impact the legume crops the bacteria help support.

In addition, pastures for grazing livestock often contain clover, another legume. High fluorine levels could harm Rhizobia living in clover root nodules. Ultimately, that could impact the livestock that eat the clover.

But there are a lot of unknowns about fluorine and its specific effects on microbes. “No one has investigated the potential impact of fluorine on Rhizobia,” says Christopher Anderson, a researcher at Massey University in New Zealand.

In the study, Anderson and colleagues found that high levels of fluorine are toxic to Rhizobia and white clover.

In laboratory studies, fluorine levels above 100 mg per liter hampered Rhizobia growth. High fluorine concentrations also led to changes in the shape and metabolic activity of the bacteria.

These high fluorine levels also impacted white clover. At fluorine concentrations above 100 mg per liter, white clover seedlings did not survive.

Fortunately, there’s some good news as well. The concentration of fluorine at which it is toxic is much greater than the concentration the researchers found in New Zealand soils.

“This means that there is no problem, right now, of fluorine levels in soil affecting Rhizobia in New Zealand’s soils,” says Anderson.

This finding gives confidence to agencies in New Zealand that are tasked with ensuring sustainable farming systems. “Without our research, they would still be in the dark,” says Anderson.

Rhizobia – and one of the host plants, white clover – are key parts of the New Zealand way of animal husbandry.

“In New Zealand, we are fortunate that we can grow grass year-round,” says Anderson. “Our livestock are kept on pasture all year.”

Rhizobium bacteria associated with clover fixes nitrogen from the atmosphere. When clover plants die, they break down in the soil. The fixed nitrogen becomes available to other plants.

“So, we don’t need to apply as much synthetic nitrogen fertilizers, such as urea, to our pastures with clover” says Anderson.

But farmers need to apply other fertilizers to New Zealand’s pastures, including phosphorus fertilizers. That’s where concerns about fluorine levels come in.

Fluorine is a fairly common element in Earth’s crust. It is concentrated in some materials, like phosphate rocks. These rocks are the main ingredient in many fertilizers with phosphorus.

In areas where phosphorus fertilizers are applied year after year, fluorine can accumulate in soils over time. This accumulated fluorine can become a soil contaminant.

“But in some cases, biological systems are very tolerant of contaminants,” says Anderson.

Anderson aims to determine fluorine levels at which it is toxic to animals. “In particular we would like to look at earthworms,” says Anderson. “Earthworms are very useful ecological indicators.”

Researchers also want to look at grazing animals, which can eat a considerable amount of soil. When animals ingest too much fluorine, they can develop fluorosis. That can cause bone, teeth, and kidney problems.

“We have to make sure the science is looking after all aspects of the pastoral system – soil, microorganisms, plants, and animals,” says Anderson.

###

Read more about this research in Journal of Environmental Quality. This work is supported by The Fertiliser Association of New Zealand.

Media Contact
Rachel Schutte
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/jeq2.20089

Tags: Agricultural Production/EconomicsAgricultureBiochemistryBiologyEcology/EnvironmentFertilizers/Pest ManagementGeology/SoilMicrobiologyPlant SciencesToxicology
Share12Tweet8Share2ShareShareShare2

Related Posts

Unraveling the Mysteries of ‘Chemo Brain’

Unraveling the Mysteries of ‘Chemo Brain’

October 13, 2025
IL1B Gene Variants Linked to Schizophrenia in Iranians

IL1B Gene Variants Linked to Schizophrenia in Iranians

October 13, 2025

Impact of Sex Differences on Health: A Review

October 13, 2025

Social Factors Impact Systemic Hormone Therapy Use in Midlife Women

October 12, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1229 shares
    Share 491 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Heart Failure and Obesity: New Treatment Strategies Unveiled

Astrocytic Ca2+ Protects Synapses During Motor Learning

Enhanced Nanostructured Anodes Boost Lithium-Ion Battery Performance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.