• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Next-gen micro-CT scan can lower radiation, offer better pictures

Bioengineer by Bioengineer
July 14, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research could ‘transform the landscape’ of micro-CT imaging

IMAGE

Credit: University of Houston

With a five-year, $3.2 million grant from the National Institute of Biomedical Imaging and Bioengineering, Mini Das, associate professor of physics at the University of Houston, will help usher in the next generation of micro computed tomography (CT) imaging. The project’s goal is to lower radiation dose in X-ray micro-CT imaging while improving the resolution and enhancing the contrast of three-dimensional pictures of small specimens, like tumors or biomaterials.

“This has the potential to transform the landscape of micro-CT imaging,” said Das, who recently developed the theory, instrumentation and algorithms for spectral phase-contrast imaging (PCI) to enable the use of much lower doses of radiation while delivering higher levels of image detail.

Das’s work addresses the challenge of current in-vivo micro-CT scanning – long imaging times, harmful, yet required, high radiation dose levels needed to follow the same subject over time, and poor image contrast.

“Current X-ray and CT systems have inherent contrast limitations and dense tissue and cancer can often look similar. Even if you increase the radiation dose, there is a limit to what you can see. In addition, image noise becomes significant when increasing resolution to see fine details, often desirable when scanning small objects,” said Das.

PCI detects how X-rays bend, or refract, particularly at the interface between tissues, providing a higher amount of contrast between different types of tissue. It also measures absorption and phase changes from X-ray transmission through the body. The resulting phase-enhanced contrast depicts high fine-structure visibility adding new image features. The developed methods can also translate to-large scale CT systems.

Detecting the bending of X-rays is challenging because the bend is small and they are both bending and being absorbed in tissues at the same time, complicating interpretation.

“X-rays, like visible light, exhibit what is called dual nature – they behave both as particles, called photons or packets of light, and waves. Phase imaging methods capture information relevant to wave nature of X-rays unlike conventional imaging systems found in clinics today,” said Das.

Das is using a new multi-energy, or spectral, detector which can see the energy of every light particle and will develop a unique spectral micro-CT system with both PCI and non-PCI capabilities.

“We are the first to show how to use photon-counting detectors in a phase-contrast imaging setting while extracting the absorption and phase effects with quantitative accuracy. This accurate phase retrieval, or recovery, is so important if you want to discriminate between cancers and normal tissues,” she said.

Multiple patents and publications from her group have shown significant preliminary data and feasibility for the new methods.

Both physics and engineering students will work together on the project, which involves international collaboration. Das also has a dual appointment in physics and biomedical engineering allowing an interdisciplinary and collaborative approach to her work.

###

Media Contact
Laurie Fickman
[email protected]

Original Source

https://uh.edu/news-events/stories/july-2020/07142020-mini-das-grant-micro-ct-imaging-next-gen.php

Tags: BiologyBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IQ Estimates in Fragile X: Abbreviated vs. Full-Scale

October 26, 2025

3D-Printed Scaffolds Advance Glioblastoma Drug Screening

October 26, 2025

Evidence-Based Model for Public Health Nursing in Japan

October 25, 2025

Intrahepatic Cholangiocarcinoma: Key Updates from Guidelines

October 25, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1282 shares
    Share 512 Tweet 320
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    193 shares
    Share 77 Tweet 48
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

IQ Estimates in Fragile X: Abbreviated vs. Full-Scale

3D-Printed Scaffolds Advance Glioblastoma Drug Screening

Evidence-Based Model for Public Health Nursing in Japan

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.