• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

UQ researchers solve a 50-year-old enzyme mystery

Bioengineer by Bioengineer
July 10, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: The University of Queensland

Advanced herbicides and treatments for infection may result from the unravelling of a 50-year-old mystery by University of Queensland researchers.

The research team, led by UQ’s Professor Luke Guddat, revealed the complete three-dimensional structure of an enzyme, providing the first step in the biosynthesis of three essential amino acids – leucine, valine and isoleucine.

“This is a major scientific advance, which has been pursued globally by chemists for half a century,” Professor Guddat said.

“This information provides new insights into an important enzyme – acetohydroxyacid synthase – a target for more than 50 commercial herbicides.

“It’s also a potential target for new drugs to treat infections such as tuberculosis and invasive Candida infections.”

Using advanced techniques such as cryo-electron microscopy and X-ray crystallography, the team deciphered the structure of the plant and fungal versions of the enzyme.

“We identified how this highly complex structure is assembled, which is the highly unusual shape of a Maltese Cross,” Professor Guddat said.

“Coincidently, the Maltese Cross also features as a part of UQ’s logo.”

Professor Guddat said the discovery could have big implications for global agriculture.

“Sulfometuron is a herbicide that targets this enzyme, and was widely used in the 1990s for wheat crop protection throughout Australia,” he said.

“But today it is completely ineffective due to the development of resistance.

“With this new insight, we will be able to make changes to existing herbicides, restoring options for future herbicide application.”

Professor Guddat said the enzyme was only found in plants and microbes, not in humans.

“For this reason, the herbicides and drugs that it targets are likely to be safe and non-toxic to all mammals,” he said.

“And another surprising finding of the research was the role that the molecule known as ATP plays in the regulation of the enzyme.

“Normally ATP plays a role in providing energy to all living cells,” Professor Guddat said.

“However, here it is acting like a piece of glue to hold the structure together.”

“They’re fascinating findings for us, and we’re excited for new opportunities for targeted design of next-gen herbicides and antimicrobial agents.”

###

The majority of the study was undertaken by Dr Thierry Lonhienne and UQ PhD candidate, Yu Shang Low, who worked closely with the ShanghaiTech University, China to obtain the cryo-EM images for the plant enzyme.

The research has been published in Nature (DOI: 10.1038/s41586-020-2514-3).

Media Contact
Luke Guddat
[email protected]

Original Source

https://www.uq.edu.au/news/article/2020/07/uq-researchers-solve-50-year-old-enzyme-mystery

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-2514-3

Tags: AgricultureBiochemistryChemistry/Physics/Materials SciencesFertilizers/Pest ManagementMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

How a Simple DNA Switch Enables Tropical Butterflies to Change Wing Patterns Seasonally: Insights from an NUS Study

How a Simple DNA Switch Enables Tropical Butterflies to Change Wing Patterns Seasonally: Insights from an NUS Study

October 24, 2025
blank

Circular RNAs Identified During Virus-Induced Mitochondrial Damage

October 24, 2025

DNA from Napoleon’s 1812 Army Reveals Pathogens Behind Their Devastating Retreat from Russia

October 24, 2025

Bacterial TIR Systems Detect Phage Capsids, Trigger Defense

October 24, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1279 shares
    Share 511 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    309 shares
    Share 124 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    187 shares
    Share 75 Tweet 47
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    133 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How a Simple DNA Switch Enables Tropical Butterflies to Change Wing Patterns Seasonally: Insights from an NUS Study

25-Year Study Reveals Incidence and Progression of Hearing Loss in Framingham Offspring Cohort

Circular RNAs Identified During Virus-Induced Mitochondrial Damage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.