• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Novel “dual-resonant method” in 2D materials can spur advances in the field of photonics

Bioengineer by Bioengineer
July 9, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists in Korea explain a new process that maximizes photon conversion in 2D materials, which could innovate photonic-based applications

IMAGE

Credit: DGIST

Photonics, or the science of manipulating light, has various applications in modern electronics–such as in information technology, semiconductors, and health-based devices. Thus, researchers globally have been focused on finding novel approaches to spur advances in the field of photonics. But, the challenge lies in optimizing the process of “photon generation” as desired, which is crucial to all photonics-based applications.

In a recent study published in Nano Letters, a team of researchers at Daegu Gyeongbuk Institute of Science and Technology (DGIST), led by Professor J.D. Lee, developed a novel mechanism to maximize the efficiency of photon conversion in 2D materials. The scientists achieved this by exploring a method called “nonlinear second-harmonic generation” (SHG), an optical process wherein two photons with the same frequency interact with a nonlinear material and generate a new photon with twice the energy, thus resulting in frequency doubling. “The efficient generation of photons is a crucial part of developing photonic devices. In our study, we developed an ultrafast process of photon conversion in an atomistic-layer material to innovate photonics-based applications.”

In their study, the scientists focused on a 2D material called tungsten diselenide (WSe2), owing to its intriguing band characteristics. For instance, this material consists of various “resonant points” that sensitively respond to the absorption of light particles called “photons.” Prof Lee says, “We focused on this feature of WSe2 and revealed a new process to convert the “color” in photons through the maximized dual resonant mode.”

Based on SHG, the researchers proposed a novel method called “dual-resonant optical sum frequency generation” (SFG), in which they selected two resonant points in WSe2 called A and D excitons, respectively. Using this method, the researchers found that when WSe2 is irradiated using two excitation pulses (ω1 and ω2), with one of the two pulses (ω1) being tuned to A exciton and their sum frequency (ω1 + ω2) to the D exciton, the signal is 20 times higher than the single-resonant mode! Not just this, the intensity that was produced by this method was found to be 1 order of magnitude higher than SHG under the same conditions. These findings were then confirmed using various techniques, including density functional theory and optical experiments. Prof Lee states, “Our proposed dual-resonant SFG method provides new scientific insights into not only nonlinear spectroscopic and microscopic methods but also nonlinear optics and technology using two-dimensional semiconductors.”

These findings show tremendous potential for the development of advanced photonic devices. Prof Lee concludes, “Our study can potentially take photonics-based applications to the next level–for example, cheaper diagnostic methods through better optical imaging instruments in the near future.”

###

Reference

Authors: Youngjae Kim1, Hyunmin Kim2, Houk Jang3, Jong-Hyun Ahn4, and J.D. Lee1

Title of original paper: Dual Resonant Sum Frequency Generations from Two-Dimensional Materials

Journal: Nano Letters

DOI: 10.1021/acs.nanolett.0c01363

Affiliations: 1 Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea

2 Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea

3 School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States

4 School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea

*Corresponding author’s email: [email protected], [email protected]

About Daegu Gyeongbuk Institute of Science and Technology (DGIST)

Daegu Gyeongbuk Institute of Science and Technology (DGIST) is a well-known and respected research institute located in Daegu, Republic of Korea. Established in 2004 by the Korean Government, the main aim of DGIST is to promote national science and technology, as well as to boost the local economy.

With a vision of “Changing the world through convergence”, DGIST has undertaken a wide range of research in various fields of science and technology. DGIST has embraced a multidisciplinary approach to research and undertaken intensive studies in some of today’s most vital fields. DGIST also has state-of-the-art-infrastructure to enable cutting-edge research in materials science, robotics, cognitive sciences, and communication engineering.

Website: https://www.dgist.ac.kr/en/html/sub01/010204.html

About the authors

Prof J.D. Lee, the lead author of this study, is a Professor in the Department of Emerging Materials Science of DGIST. Dr Youngjae Kim, the first author of this study, is a post-doctoral researcher in Prof Lee’s group at DGIST. Dr Hyunmin Kim, the co-corresponding author of this study, is a senior researcher in the Division of Biotechnology at DGIST.

Media Contact
Kwanghoon Choi
[email protected]

Original Source

https://dgist.ac.kr/en/html/sub06/060202.html

Related Journal Article

http://dx.doi.org/10.1021/acs.nanolett.0c01363

Tags: Nanotechnology/MicromachinesResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.