• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Using electricity to break down pollutants left over after wastewater treatment

Bioengineer by Bioengineer
July 9, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team at the INRS tested an advanced electro-oxidation process

IMAGE

Credit: Jean-Daniel Bourgault (INRS)

Pesticides, pharmaceutical products, and endocrine disruptors are some of the emerging contaminants often found in treated domestic wastewater, even after secondary treatment. Professor Patrick Drogui of the Institut national de la recherche scientifique (INRS) and his team have tested the effectiveness of a tertiary treatment process using electricity in partnership with the European Membrane Institute in Montpellier (IEM) and Université Paris-Est.

The advanced electro-oxidation process (EOA) uses two electrodes to break down non-biodegradable pollutants that remain after biological treatment. Electric current is passed through the electrodes, generating hydroxide radicals (* OH), which attack the refractory molecules. The primary advantage of this method is that it does not require any chemicals to be added to the water.

“EOA processes are revolutionary in the field of wastewater treatment. It’s pioneering technology for treating wastewater contaminated by refractory pollutants such as pharmaceutical wastes,” said Professor Patrick Drogui, co-author of the study published on June 18 in the prestigious journal Science of the Total Environment.

The researchers tested new catalytic electrodes. “We have shown that these electrodes are effective and produce large quantities of hydroxide radicals. They are also cheaper than the other electrodes currently on the market, which reduces the cost of the treatment,” said Yassine Ouarda, Ph.D. student and first author on the study.

Versatile Tertiary Treatment

Researchers tested the technology on three types of water coming from different treatment processes: conventional, membrane bioreactor, and a treatment process that separates wastewater, including feces, at the source. They focused on paracetamol, otherwise known as acetaminophen. “We tested the process on this particular molecule because it’s one of the world’s most widely used drugs. We have already tested it at INRS for some 15 different pollutants, as the process can be used for other pharmaceutical molecules,” said Mr. Ouarda.

During partial breakdown of pollutants such as pharmaceuticals, the by-products can be more toxic than the parent compounds. “We observed that the toxicity of the solution increased and subsequently decreased during treatment. This indicates that the toxic molecules are themselves broken down if the reaction continues,” said Mr. Ouarda.

“This work once again confirms that advanced electro-oxidation processes are good candidates for breaking down drug wastes left behind after biological treatment,” said Professor Drogui.

###

About the study

The paper “Electro-oxidation of secondary effluents from various wastewater plants
for the removal of acetaminophen and dissolved organic matter”, by Yassine Ouarda, Clément Trellu, Geoffroy Lesage, Matthieu Rivallin, Patrick Drogui and Marc Cretin, was published on June 18 in the journal Science of the Total Environment.

They received financial support from Mitacs through the Mitacs Globalink program. DOI: https://doi.org/10.1016/j.scitotenv.2020.140352

About the INRS

The Institut national de la recherche scientifique (INRS) is the only institution in Québec dedicated exclusively to graduate level university research and training. The impacts of its faculty and students are felt around the world. INRS proudly contributes to societal progress in partnership with industry and community stakeholders, both through its discoveries and by training new researchers and technicians to deliver scientific, social, and technological breakthroughs in the future.

Contact :

Audrey-Maude Vézina

Service des communications et des relations gouvernementales de l’INRS

418-254-2156 (cell)

[email protected]

Media Contact
Audrey-Maude Vezina
[email protected]

Original Source

http://www.inrs.ca/english/actualites/using-electricity-break-down-pollutants-left-over-after-wastewater-treatment

Related Journal Article

http://dx.doi.org/10.1016/j.scitotenv.2020.140352

Tags: BiochemistryBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesEcology/EnvironmentHydrology/Water ResourcesIndustrial Engineering/ChemistryPharmaceutical SciencesPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Machine-Learned Model Maps Protein Landscapes Efficiently

Machine-Learned Model Maps Protein Landscapes Efficiently

August 9, 2025
High-Definition Simulations Reveal New Class of Protein Misfolding

High-Definition Simulations Reveal New Class of Protein Misfolding

August 8, 2025

Organic Molecule with Dual Functions Promises Breakthroughs in Display Technology and Medical Imaging

August 8, 2025

Spatiotemporal Photonic Emulator Mimics Potential-Free Schrödinger Equation

August 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    135 shares
    Share 54 Tweet 34
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    76 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lung Ultrasound Transforms Neonatal and Pediatric Respiratory Care

Decoding Finch Louse Fly Morphotypes: Taxonomy Insight

Understanding Tenosynovial Giant Cell Tumors in Kids

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.