• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

5G networks have few health impacts, Oregon State study using zebrafish model finds

Bioengineer by Bioengineer
July 8, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Lynn Ketchum

CORVALLIS, Ore. – Findings from an Oregon State University study into the effects of radiofrequency radiation generated by the wireless technology that will soon be the standard for cell phones suggest few health impacts.

Fifth generation or 5G wireless technology, which began being deployed worldwide in 2019, provides faster connectivity and more bandwidth, meaning higher download speeds.

But because 5G technology is so new, little is known about the potential health effects from its radiofrequency radiation, which is higher than the current industry standard 4G. The Oregon State study begins to change that.

“Based on our study, we don’t think 5G radiation is that harmful,” said Subham Dasgupta, a postdoctoral fellow working in the lab of Robyn Tanguay at Oregon State. “It’s predominately benign.”

Researchers conducted the research using embryonic zebrafish, a model organism often used to discover interactions between environmental stressors and biological systems. Zebrafish and humans have similar developmental processes and are similar on a genomic level, meaning zebrafish research can easily be applied to humans.

In the study, published July 9 in the journal PLOS ONE, the researchers exposed embryonic zebrafish for two days to 3.5 GHz radiofrequency radiation, the frequency typically used by 5G-enabled cell phones.

They found no significant impacts on mortality, how the embryos formed or the embryos’ behavioral response to light. They did find a modest impact on a test that measures the embryos’ response to a sudden sound that they will investigate further.

Future research will look at the 5G radiation effects on the same zebrafish used in the study at a gene level and as they develop from embryos to adults, Dasgupta said. The researchers also would like to study the impacts of higher frequencies and higher exposure levels on zebrafish to keep pace with the changing cell phone industry.

The future research will use the same standardized experimental set up used in this study. It involves a box made of copper. The zebrafish embryos are placed on plates, which are put inside the box. The radiation enters the box through an antennae and the copper keeps it inside the box.

###

It was developed in conjunction with Huaping Liu, a professor in Oregon State’s College of Engineering, and several members of his lab.

Other authors of the study were Guangxin Wang, Michael Simonich, Tingwei Zhang and Lisa Truong. Tanguay and Dasgupta are in the Department of Environmental and Molecular Toxicology in the College of Agricultural Sciences at Oregon State.

Media Contact
Sean Nealon
[email protected]

Tags: BiologyDeath/DyingDevelopmental/Reproductive BiologyEnvironmental HealthMedicine/HealthMortality/Longevity
Share12Tweet8Share2ShareShareShare2

Related Posts

Revealing Aging Changes in Renal Tubulointerstitium

October 19, 2025

Reversing Cellular Aging: PURPL RNA’s Epigenetic Breakthrough

October 19, 2025

Exploring Language Switching in Multilingual Autistic Adults

October 19, 2025

Effective Nursing Strategies for Cardiovascular Disease Prevention

October 19, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1262 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    290 shares
    Share 116 Tweet 73
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    124 shares
    Share 50 Tweet 31
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revealing Aging Changes in Renal Tubulointerstitium

Reversing Cellular Aging: PURPL RNA’s Epigenetic Breakthrough

Restoring Kraak Porcelain Patterns with Generative AI

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.