• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The mystery of pollen sterility and its reversion in pigeon pea revealed in a new study

Bioengineer by Bioengineer
July 1, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: CC BY-SA 4.0

This work has been published in The Plant Genome very recently. This study has analyzed one environment-sensitive genic male sterile (EGMS) line that exhibited fertility transition under specified environmental conditions. Fertility transition here refers to the reversion of male sterile condition producing viable pollen to become male fertile plant and vice-versa. An EGMS line, if understood better, could be used together with any elite line for hybrid seed production. Such a system is popular in rice, where the two-line based hybrid rice occupies about 30% of the total hybrid rice growing areas with up to 5-10% higher yield than the three-line hybrids. This new study has dissected unique phenomenon of fertility-sterility transition at molecular level using the systems biology approach.

Prof. Wolfram Weckwerth, Director of VIME and co-leader of this study highlights the importance, “This study is a result of our collaboration over several years with the ICRISAT Center of Excellence in Genomics & Systems Biology.” He added, “We are very much hopeful that this study will be hihgly useful to enhance a hybrid breeding system in pigeonpea and help the farming community in developing countries.”

Pigeonpea is a key staple crop, highly resistant against drought and extremely important to smallholder farmers in India and many developing countries such as Myanmar, Nepal, Tanzania, Kenya etc. Several years back ICRISAT together with their partners developed cytoplastic male sterility (CMS)-based three-lines hybrid breeding system in pigeonpea. These hybrids have demonstrated upto 30-40% yield advantage over popular varieties. The current hybrid breeding system needs three lines- A- cytoplasmic sterile line, R- fertility restorer line, and B- sterility maintainer line. As a result, the hybrid seed production system is technically demanding and resource intensive. To make the current hybrid breeding system simple and cost effective, CEGSB has been working with VIME for the last years to dissect a suitable EGMS line.

Prof. Rajeev K Varshney, Director, CEGSB at ICRISAT and co-leader of the study on completion of this study said, “It has been privilege for us to work with VIME for using a systems biology approach that combines transcriptomics, proteomics, metabolomics and computational genomics for dissecting fertility-sterility transiation mechanism in the EGMS line.” He added, “This study has identified a transcription factor called REVEILLE1 to regulate auxin levels that explains the fertility transition in response to day temperature, especially morning hours.”

Dr Rachit Saxena, co-leader and Senior Scientist at ICRISAT told, “Our study had revealed the role of disturbed auxin levels for causing pollen wall thickening and responsible for inhibiting nutrient uptake leading to starvation of pollen grain and subsequent sterility.”

In summary, the precise day temperatures could be utilized for hybrid seed production (sterility condition) and multiplication of the TGMS line (fertility condition). Accordingly, any fluctuation in the environmental condition could be monitored for critical temperatures. Further, the exogenous application of auxin could be useful for multiplication of the male sterile line under unfavorable conditions (e.g. higher day temperatures). In the tropical regions, thermosensitive genic male sterility is considered more appropriate for two-line hybrid breeding over photo-sensitive genic male sterility as photoperiod differences are marginal. TGMS line identified from this study looks at a promising future that could ensure a successful hybrid seed production methodology for development of a two-line based hybrid pigeonpea for the semi-arid tropics.

###

The publication
https://acsess.onlinelibrary.wiley.com/doi/10.1002/tpg2.20028

The Vienna Metabolomics Center
https://metabolomics.univie.ac.at/

ICRISAT Center of Excellence in Genomics & Systems Biology
http://cegsb.icrisat.org/

Media Contact
Univ.-Prof. Dr. Wolfram Weckwerth
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/tpg2.20028

Tags: BiologyCell BiologyGenetics
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.