• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, November 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A fresh twist in chiral topology

Bioengineer by Bioengineer
June 22, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © MPI CPfS

The concept of chirality is well-established in science: when an object cannot be superimposed on its mirror image, both the object and its mirror image are called chiral. In drug industry, for instance, more than 50% of the pharmaceutically active molecules used nowadays are chiral molecules. While one of the “enantiomers” is life-saving, its counterpart with opposite handedness may be poisonous. Another concept which has found widespread interest in contemporary materials science is topology as many so-called topological materials feature exotic properties. For example, topological materials can have protected edge states where electrons flow freely without resistance, as if a superconducting path of electrons were created at the edge of a material. Such unconventional properties are a manifestation of the quantum nature of matter. The topological materials can be classified by a special quantum number, called the topological charge or the Chern number.

Chiral topological materials have particularly unique properties which may be useful in future devices for quantum computers which could speed up computations considerably. An example for such a property is the long-sought large quantized photogalvanic current. Here a fixed dc current is generated in a chiral topological material once exposed to a circularly-polarized light, which is independent of the strength of incident radiation and its direction can be manipulated by the polarization of incident light. This phenomenon relies on the fact that the material possesses a high topological charge of 4, which is the maximum possible value in any material.

Solid-state chemists and physicists from the Max Planck Institute for Chemical Physics of Solids (MPI CPfS), the Leibniz Institute for Solid State and Materials Research (IFW), the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the Helmholtz-Zentrum Berlin fuer Materialien und Energie (HZB) and the University of Science and Technology of China, Hefei succeeded to realize this peculiar electronic state for the first time in the new chiral topological compound PtGa. Their results have been published in Nature Communications1.

In the study, the researchers have used exceptionally strong spin-orbit coupling in PtGa as the key parameter to clearly resolve and count the number of special topological surface states, called the Fermi arcs, which determine the topological charge. “PtGa is the best compound existing in nature with chiral B20 structure to observe spin-split Fermi arcs and realize the maximal Chern number 4 as it has the strongest spin-orbit coupling.” says Kaustuv Manna, one of the authors of the study who works as a scientist at Max Planck Institute for Chemical Physics of Solids Dresden.

Theoretical calculations performed by Yan Sun and his colleagues suggested that the compound PtGa is a highly promising candidate to observe the high topological charge which was experimentally verified by Mengyu Yao and his colleagues who performed detailed angle-resolved photoemission spectroscopy (ARPES) studies. ARPES is a powerful tool to investigate the behavior of electrons in solids.

“The work by Yao et al. reveals that PtGa is a topological semimetal with a maximal chiral charge and has the strongest spin-orbital coupling among all chiral crystals identified up to date. This observation is significant and has great implications for its transport properties, such as magnetotransport.” explains Ming Shi, a professor and senior scientist at Paul Scherrer Institute, Switzerland.

The study is an example for an excellent collaboration between research groups covering different areas of expertise. Within the excellence cluster ct.qmat, scientists are cooperating to investigate fundamentally new states of matter. “We are focusing on novel materials whose observed properties and functions are driven by quantum mechanical interactions at the atomic level, with semimetals such as PtGa being one of the most exciting examples,” says Jochen Wosnitza, Director of the Dresden High Magnetic Field Laboratory (HLD) at HZDR, referring to one of the cluster’s main research topics. Institutes participating in the cluster and collaborating on the current publication include the DRESDEN-concept partners MPI CPfS, IFW, and HZDR.

###

Media Contact
Mengyu Yao
[email protected]

Original Source

https://www.nature.com/articles/s41467-020-15865-x

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-15865-x

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    203 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital HR Transformation Challenges in Bangladesh Healthcare

Advanced Techniques Boost Cancer Detection Accuracy

Examining Patient Perspectives on Autism Diagnosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.