• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Why and to what extent a large hip protects from type 2 diabetes and CVD

Bioengineer by Bioengineer
June 18, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Norbert Stefan

In a Lancet Diabetes & Endocrinology review article Norbert Stefan from the German Center for Diabetes Research (DZD), the University Hospital of Tübingen and the Boston Children’s Hospital, highlights why and to what extent a large hip circumference, an estimate of increased fat mass in the lower part of the body, protects from type 2 diabetes and cardiovascular diseases (CVD). He also provides new information that a high amount of hip and leg fat mass is very important to retain metabolic health. In addition, he discusses lifestyle modifications and pharmacological interventions that improve body fat distribution and exemplifies how a focus on lower body fat mass helps clinicians in risk assessment and patient communication.

An increased fat mass is an important risk factor for the worldwide increase in type 2 diabetes and CVD. However, for a given fat mass, there is a large variability in the risk of these cardiometabolic diseases. For example, some lean people unexpectedly have a risk of type 2 diabetes and CVD that is similar to the increased risk that is observed in most people who have obesity. What both of these phenotypes have in common is an increased upper body, and more specifically, an increased visceral (inside the belly), fat mass. As a result, much focus has been given on the strong predictive power of upper body obesity. However, comparisons to rare diseases such as lipodystrophy (dramatic rarefication of fat mass under the skin) and studying genetically determined fat distribution in the general population, suggest that an impaired ability to expand fat in the lower part of the body is also very important for predicting the incidence of these diseases.

Norbert Stefan highlights mechanisms that result in storage of energy in different fat depots of the body, or ectopically, in organs such as the liver, the pancreas and the heart. Then he discusses studies showing to what extent measurement of fat in the lower part of the body is helpful to estimate the risk of type 2 diabetes and CVD. In this respect recently published landmark studies provided genetic support that a low amount of estimated visceral fat and a high amount of lower body fat may be equally important to retain cardiometabolic health. He then provides novel information from a magnetic resonance imaging study supporting this hypothesis.

The author then discusses mechanisms that may drive a dramatic re-distribution of fat from the lower to the upper part of the body during aging. In this respect changes of sex hormone levels and signaling during lifetime are considered very important, both, in men and in women. He also highlights strategies, related to changes in lifestyle, or pharmacological treatment in diseases associated with disproportionate fat distribution, such as nonalcoholic fatty liver disease or a lipodystrophy-like phenotype, that help to hinder such fat-redistribution. Finally, he exemplifies how the focus on lower body fat mass helps health care providers to better assess the risk of cardiometabolic diseases and to communicate this risk with their patients.

###

Publication:

Stefan N. Causes, consequences, and treatment of metabolically unhealthy fat distribution. Lancet Diabetes Endocrinol. 2020 July 1; 8(7):616-627. doi.org/

Contact:

Prof. Dr. med. Norbert Stefan

German Center for Diabetes Research

Department of Internal Medicine IV

Tübingen University Hospital

Otfried-Müller-Str. 10, 72076 Tübingen, Germany

Phone: +49 (0)7071 29-80390

Email: [email protected]

Media Contact
Birgit Niesing
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41574-020-0364-6

Tags: DiabetesEndocrinologyMedicine/HealthMetabolism/Metabolic Diseases
Share12Tweet8Share2ShareShareShare2

Related Posts

Impact of Motor Support on Autistic Children’s Growth

December 2, 2025

Key Factors for Liraglutide Weight Loss in Diabetes

December 2, 2025

Sini San Alleviates Depression Through Gut Microbiota

December 2, 2025

Public Sentiment on COVID-19 Policy Effectiveness

December 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    106 shares
    Share 42 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    68 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Layered Fe3O4@Cg-DTC/AgNPs: A Novel Antimicrobial Agent

Impact of Motor Support on Autistic Children’s Growth

Non-Contact Photothermal Start for 3D Polymer Printing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.