• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A raft that won’t save you

Bioengineer by Bioengineer
June 15, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research investigates the role of lipid rafts in virus infiltration

IMAGE

Credit: Carotenuto, Lunghi et al.

PITTSBURGH (June 15, 2020) — A cell’s membrane acts as a natural shield, a fence around the cell that protects and contains it. It mediates processes that let nutrients through and let waste out, and it acts as a physical barrier to the entry of toxic substances and pathogens, like the viruses SARS-CoV-1 and SARS-CoV-2, the one that causes COVID-19.

Such pathogens, however, employ clever strategies to trick and penetrate the cell, thereby replicating themselves and infecting the human body. The virus deceives the membrane by exposing specific anti-receptors to which suitable cell’s receptors normally bind. The virus tricks the receptors into believing that what’s landing is something else, namely an affine ligand, something that is safe. Such a process activates and grows thickened zones along the cell membrane, or “lipid rafts,” which are more likely to permit the virus to alter the cell’s membrane, yielding its entry into the cell.

New interdisciplinary research published in the Journal of the Mechanics and Physics of Solids sheds light on how and why the cell membrane forms and grows lipid rafts triggered by ligand-receptor activity. The work could lead to new strategies and innovative approaches to prevent or fight the action of the virus through the integration of biomedical and engineering knowledge.

“Although lipid rafts’ influence on a cell’s response to external agents has been deeply investigated, the physical components of what takes place during ligand-binding has not yet been fully understood,” said Luca Deseri, research professor at the University of Pittsburgh’s Swanson School of Engineering in the Mechanical Engineering and Materials Science Department, full professor and head of the graduate school in Engineering at DICAM-University of Trento in Italy, and corresponding author on the paper. “Our team used an interdisciplinary approach to better understand why active receptors tend to cluster on lipid rafts. More importantly, we confirm and predict the formation of the complex ligand receptors.”

Through the studies of how mechanical forces and biochemical interactions affect the cell membrane, this research sheds light on the way localized thickening across cell membranes is triggered by the formation of the ligand-receptor complex. The researchers concluded that the formation of ligand-receptor complexes could not take place in thinner zones of the cell membrane; the thickening of the cell membrane provides the necessary force relief to allow for configurational changes of the receptors, which then become more prone to ligand binding

Understanding the way viruses use lipid rafts to alter the cell wall could lead to new approaches to treat and prevent viruses, like the one that causes COVID-19, from spreading in the body.

###

The work is a joint effort between Deseri, Massimiliano Fraldi, full professor of solid and structural mechanics at the University of Naples-Federico II in Naples, Italy, and Nicola M. Pugno, full professor of solid and structural mechanics at DICAM-University of Trento. The research was also co-authored by researchers from Carnegie Mellon University, from the University of Palermo, and from the University of Ferrara, where the experiments on the cells were performed.

The paper, “Mechanobiology predicts raft formations triggered by ligand-receptor activity across the cell membrane,” (DOI: 10.1016/j.jmps.2020.103974) was published in the Journal of the Mechanics and Physics of Solids. It was authored by Angelo R. Carotenuto, Laura Lunghi, Valentina Piccolo, Mahnoush Babaei, Kaushik Dayal, Nicola M. Pugno, Massimiliano Zingales, Luca Deseri and Massimiliano Fraldi. The researchers will submit related work to the Frontiers in Materials as part of a special issue, edited by Pugno, about the COVID-19 pandemic.

Media Contact
Maggie Pavlick
[email protected]

Original Source

https://www.engineering.pitt.edu/News/2020/Deseri-Lipid-Raft/

Related Journal Article

http://dx.doi.org/10.1016/j.jmps.2020.103974

Tags: Medicine/HealthMolecular BiologyTechnology/Engineering/Computer ScienceVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.