• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists made a single-cell-resolution map of brain genes in humans and other primates

Bioengineer by Bioengineer
June 4, 2020
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Pavel Odinev/ Skoltech

A group of scientists led by Philipp Khaitovich, a professor at Skoltech, conducted a large-scale study of gene expression in 33 different brain regions of humans, chimpanzees, macaques and bonobos using the single-cell-resolution transcriptomics technologies and made a map of the different brain regions with their specific cell structures. Such maps are highly valuable for the human evolution research.

The human brain is amazingly complex, and its evolution has long been a subject of unfailing interest for scientists. What are the most significant evolutionary changes that distinguish the modern brain from that of our distant ancestors and make humans so different from other species?

An international group of scientists from Russia, China, Germany and Switzerland led by Philipp Khaitovich, a professor at the Skoltech Center for Neurobiology and Brain Restoration (CNBR), with the participation of Ekaterina Khrameeva, the first author of the paper and an assistant professor at the Skoltech Center for Life Sciences (CLS), studied 422 brain samples taken from 33 different brain regions in humans, chimpanzees, macaques, and bonobos. The scientists looked at gene expression focusing on how specific genes operate in those regions and analyzed a total of 88,047 individual cells using the single-cell-resolution method. The study helped identify the brain regions that are the most distinctive in humans and, therefore, undergo faster evolution. These include the cerebral cortex, hypothalamus, and cerebellar gray and white matter. Also, oligodendrocytes and astrocytes displayed more differences in the human evolutionary lineage than neurons as compared to similar cells in other primates.

“We are not the first to look into gene expression in the brain. This is an important area of research that someday will shed more light on how human consciousness appeared. However, the tricky point here is that there can be two possible reasons for evolutionary changes in expression: a change in the cellular structure in some area of the brain or a change in the expression of genes in the cells. Previously, scientists could not draw the line between these two possibilities, and now, with the advanced single-cell-resolution method, we finally did it! Our new findings will help better understand the ins and outs of the evolution of gene expression on a more subtle level that was unavailable till now,” says Ekaterina Khrameeva.

###

Media Contact
Alina Chernova
[email protected]

Original Source

https://www.skoltech.ru/en/2020/06/scientists-made-a-single-cell-resolution-map-of-brain-genes-in-humans-and-other-primates/

Related Journal Article

http://dx.doi.org/10.1101/gr.256958.119

Tags: BioinformaticsBiologyEvolutionGeneticsMolecular BiologyPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Pseudomonas aeruginosa Tracks Biofilms via Pili, Adhesins

Pseudomonas aeruginosa Tracks Biofilms via Pili, Adhesins

September 5, 2025
blank

Tracing Plant Acetophenone Biosynthesis via Side-Chain Shortening

September 5, 2025

Exploring MADS-Box Genes in Grass Pea Under Salt Stress

September 5, 2025

To Eat or Nurture? Male Frogs’ Behavior Dilemma

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15
/div>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Struvite’s Potential in Soilless Crop Systems

Exploring Non-HLA Genetics in Living Donor Selection

A High-Performance W-CoMnP Electrocatalyst Achieved by Counteracting the Jahn-Teller Effect with W Doping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.