• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Promising new method for producing tiny liquid capsules

Bioengineer by Bioengineer
June 2, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Solid capsules with a liquid core are ideal for storage and delivery of oil-based materials in skin care or for use as bioreactors

IMAGE

Credit: Nam-Trung Nguyen

WASHINGTON, June 2, 2020 — Microcapsules for the storage and delivery of substances are tiny versions of the type of capsule used for fish oil or other liquid supplements, such as vitamin D. A new method for synthesizing microcapsules, reported in AIP Advances, by AIP Publishing, creates microcapsules with a liquid core that are ideal for the storage and delivery of oil-based materials in skin care products. They also show promise in some applications as tiny bioreactors.

Current production methods for microcapsules involve the use of emulsions, but these often require surfactants to ensure stability of the interface between the inner liquid and the one used to create the outer shell. Since surfactants can adversely affect the liquids involved, other approaches have been tried, including spraying liquids in a strong electric field.

One technique for creating microcapsules that works reasonably well involves the use of tiny channels. This microfluidics approach requires the complete wetting of the tiny channels with the liquids used to make the droplets. This, again, requires surfactants, complicating the fabrication process.

In this new method, a surfactant-free microfluidics process is used. The technique can produce up to 100 microcapsules per second. The output could be even larger at higher flow rates, according to the authors.

To produce the microcapsules, the investigators created a device by etching tiny channels into hard plastic. Two different liquids, an oily one for the core and a different one for the shell, were injected into the channels.

As the liquids are pumped through, droplets form when the immiscible liquids come into contact. The droplets are kept separate from one another with a third liquid and, finally, irradiated with ultraviolet light. This final step causes the outer shell to polymerize and solidify, trapping the liquid core.

The investigators analyzed and optimized the system by trying different flow rates and other operating conditions. The final droplets were examined and allowed to dry overnight at a high temperature, but no evaporation or shrinkage was observed, showing that the microcapsules can be safely stored without rupturing. This makes them ideal for pharmaceutical or skin care applications.

“Another application for microcapsules would be the polymerase chain reaction, PCR,” said co-author Nam-Trung Nguyen, of Griffith University in Australia.

Keeping the PCR samples in these tiny capsules allows for implementation of a technique known as digital PCR.

“Each microcapsule could serve as a single microreactor, eliminating the need for well plates,” said Nguyen.

###

The article, “Surfactant-free, UV-curable core-shell microcapsules in a hydrophilic PDMS microfluidic device,” is authored by Adrian J.T. Teo, Fariba Malekpour-galogahi, Kamalalayam Rajan Sreejith, Takayuki Takei and Nam-Trung Nguyen. The article will appear in AIP Advances on June 2, 2020 (DOI: 10.1063/5.0004736). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0004736.

ABOUT THE JOURNAL

AIP Advances is an open access journal publishing in all areas of physical sciences–applied, theoretical, and experimental. The inclusive scope of AIP Advances makes it an essential outlet for scientists across the physical sciences. See https://aip.scitation.org/journal/adv.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0004736

Tags: BiologyChemistry/Physics/Materials SciencesPolymer Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Optimizing Energy-Level Alignment in Perovskite Solar Cells: Insights from an Energy Flow Perspective

September 9, 2025
blank

Tiny Yet Mighty: Metamaterial Lenses Revolutionize Phones and Drones

September 9, 2025

UZH Device Pioneers Search for Light Dark Matter

September 8, 2025

Unlocking Insulators: How Light Pulses Set Electrons Free

September 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthrough Study Uncovers Mechanisms Safeguarding Chromosome Ends

Graz Researchers Uncover Mechanisms Behind Aorta Stiffening

Relative Fat Mass Predicts Type 2 Diabetes Risk

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.