• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers have developed a first-principles quantum Monte Carlo package called TurboRVB

Bioengineer by Bioengineer
June 1, 2020
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: AIP Publishing

First-principles quantum Monte Carlo is a framework used to tackle the solution of the many-body Schrödinger equation by means of a stochastic approach. This framework is expected to be the next generation of electronic structure calculations because it can overcome some of the drawbacks in density functional theory and wavefunction-based calculations. In particular, the quantum Monte Carlo framework does not rely on exchange-correlation functionals, the algorithm is well suited for massively parallel supercomputers, and it is easily applicable to both isolated and periodic systems.

“TurboRVB” is a first-principles quantum Monte Carlo software package that was initially launched by Prof. Sandro Sorella (International School for Advanced Studies/Italy) and Dr. Michele Casula (Sorbonne University/France), and has been continuously developed by many contributors for over 20 years. Very recently, Assist. Prof. Kosuke Nakano at Japan Advanced Institute of Science and Technology (JAIST, President: Minoru Terano, located at Nomi, Ishikawa, Japan) and his collaborators have published a comprehensive review paper in The Journal of Chemical Physics [K. Nakano et al. J. Chem. Phys. 152, 204121, 2020, DOI: 10.1063/5.0005037].

TurboRVB is distinguishable from other first-principles quantum Monte Carlo codes in the following features. (a) The code employs resonating valence bond (RVB)-type wave functions, such as the Jastrow Geminal/Jastrow Pfaffian, which include the correlation effect beyond the Jastrow-Slater wave function that is commonly used in other QMC codes. (b) Implemented state-of-art optimization algorithms, such as the stochastic reconfiguration and the linear method, help realize a stable optimization of the amplitude and nodal surface of a many-body wave function at the variational quantum Monte Carlo level. (c) The so-called lattice-regularized diffusion Monte Carlo method is implemented in the code, which provides a numerically stable diffusion quantum Monte Carlo calculation. (d) The implementation of an adjoint algorithmic differentiation allows us to compute derivatives of many-body wave functions very efficiently and to perform structural optimizations and molecular dynamics simulations.

###

The published paper describes the details of the algorithms implemented in TurboRVB and summarizes its applications to date.

TurboRVB (English)

Media Contact
Kosuke Nakano
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0005037

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMaterialsMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    130 shares
    Share 52 Tweet 33
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Philothamnus Snakes: Breeding, Communication, and Combat

Integrating Life Stories for Patient-Centered Care

Tailored Protein Advice Boosts Nutrition in Older Adults

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.