• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 18, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Next-gen laser facilities look to usher in new era of relativistic plasmas research

Bioengineer by Bioengineer
May 26, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Laser beams with power up to 10 petawatts will create plasmas with energy levels to be studied with quantum electrodynamics, with implications for medical imaging and security detection

IMAGE

Credit: Stephen Alvey/Alec Thomas

WASHINGTON, May 26, 2020 — The subject of the 2018 Nobel Prize in physics, chirped pulse amplification is a technique that increases the strength of laser pulses in many of today’s highest-powered research lasers. As next-generation laser facilities look to push beam power up to 10 petawatts, physicists expect a new era for studying plasmas, whose behavior is affected by features typically seen in black holes and the winds from pulsars.

Researchers released a study taking stock of what upcoming high-power laser capabilities are poised to teach us about relativistic plasmas subjected to strong-field quantum electrodynamics (QED) processes. In addition, the proposed new study designs for further exploring these new phenomena.

Appearing in Physics of Plasmas, from AIP Publishing, the article introduces the physics of relativistic plasma in supercritical fields, discusses the current state of the field and provides an overview of recent developments. It also highlights open questions and topics that are likely to dominate the attention of people working in the field over the next several years.

Strong-field QED is a lesser-studied corner of the standard model of particle physics that has not been explored at big collider facilities, such as SLAC National Accelerator Laboratory or CERN, the European Organization for Nuclear Research, due to the lack of strong electromagnetic fields in accelerator settings. With high-intensity lasers, researchers can use strong fields, which have been observed in phenomena such as gamma ray emission and electron-positron pair production.

The group explores how the findings could potentially lead to advances in studies of fundamental physics and in the development of high-energy ion, electron, positron and photon sources. Such findings would be crucial for expanding on many types of scanning technology present today, ranging from materials science studies to medical radiotherapy to next-generation radiography for homeland security and industry.

The QED processes will result in dramatically new plasma physics phenomena, such as the generation of dense electron-positron pair plasma from near vacuum, complete laser energy absorption by QED processes, or the stopping of an ultrarelativistic electron beam, which could penetrate a centimeter of lead by a hair’s breadth of laser light.

“What kind of new technology these new plasma physics phenomena might translate is largely unknown, especially because the field of QED plasmas itself is a kind of uncharted territory in physics,” author Peng Zhang said. “At the current stage, even adequate theoretical understanding is significantly lacking.”

The group hopes the paper will help bring the attention of more researchers to the exciting new fields of QED plasmas.

###

The article, “Relativistic plasma physics in supercritical fields,” is authored by Peng Zhang, Stepan Bulanov, Daniel Seipt, Alexey Arefiev and Alexander G.R. Thomas. The article will appear in Physics of Plasmas on May 26, 2020 (DOI: 10.1063/1.5144449). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5144449.

ABOUT THE JOURNAL

Physics of Plasmas is devoted to the publication of original experimental and theoretical research that significantly advances the field of plasma physics. The journal also features comprehensive reviews, advanced tutorials, and forward-looking perspectives. See https://aip.scitation.org/journal/php.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/1.5144449

Tags: Chemistry/Physics/Materials SciencesMaterialsOpticsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Creating Synthetic Protein-Binding DNA Systems in Cells

January 17, 2026
blank

Chiral Catalysis Powers Rotary Molecular Motors

January 16, 2026

Selective GlcNAc to GalNAc Epimerization via Kinetic Control

January 15, 2026

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    78 shares
    Share 31 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    54 shares
    Share 22 Tweet 14

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Chick Retina Shows Prolonged Wnt/β-Catenin Activation in Myopia

Evaluating P2 MHEV SUV for EU7 Compliance

Insights on Aging Skin Care from Geriatric Physicians

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.