• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A new look into the sources and impacts of greenhouse gases in China

Bioengineer by Bioengineer
May 18, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Advances in Atmospheric Sciences

China’s implementation of a national carbon trading market to reduce greenhouse gas (GHG) emissions requires reliable and timely information on GHG sources and impacts. Recent GHG monitoring and modeling studies provide new GHG emission estimates to help policymakers guide progress toward emission reductions.

“Atmospheric Greenhouse Gas Measurement and Application in China,” a joint special issue of three journals–Advances in Atmospheric Sciences (AAS, Atmospheric and Ocean Science Letters, and Advances in Climate Change Research– details the latest observations and findings presented by researchers at the First China Greenhouse Gas Monitoring Conference, held in Beijing between May 30 to 31 in 2019.

Reporting on carbo dioxide distribution in Xi’an City, ozone flux over a maize field, hydrofluorocarbon emissions in the Yangtze river delta and stratosphere-troposphere exchanges of carbon dioxide and carbon monoxide above China, these and other studies presented in this comprehensive AAS issue reflect China’s improved atmospheric GHG measurement techniques.

“As a nation heavily impacted by climate change, China has implemented many actions to respond to this global challenge,” said Dr. Pengfei Han, State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics of Institute of Atmospheric Physics at Chinese Academy of Sciences. Han is one of the organizers of the joint special issue. “These efforts provide scientific understanding, technical support and solutions for major issues such as energy conservation and emissions reduction, carbon market transactions and low-carbon development.”

Highlights from the issue cover all of the 2019 conference topics:

CO2 background monitoring. Mai et al. (link.springer.com/article/10.1007/s00376-020-9238-z) measured background atmospheric CO2 and potential regional sources in the Pearl River Delta region.

CO2 city area (emission sources) monitoring. Xiong et al. report on CO2 spatial distribution in Xi’an City using carbon-14 data. Bao et al. used a low-cost, non-dispersive infrared sensor to observe vertical CO2 distribution in Shijiazhuang. Zhang et al. analyzed CO2 variation and transmission in Taiyuan.

Non-CO2 GHG monitoring. Pu et al. estimated 2012-2016 hydrofluorocarbon emissions in the Yangtze River Delta region.

GHG flux measurement. Zhu et al. compared ozone flux above a maize field using gradient and eddy covariance methods.

New technologies and applications for GHG measurement. Ji et al. document methane distribution in Xianghe derived from ground-based measurements. Yi et al. used the National Oceanic and Atmospheric Administration’s AirCore method to directly observe atmospheric transport and stratosphere-troposphere exchange based on CO2 profile measurements in Inner Mongolia.

Applications of observational data. Fu et al. studied the sensitivity of simulated CO2 concentrations to interannual variations over East Asia.

Along with this special issue, the China Carbon Monitoring Alliance has started, while a data resources platform was established to provide opportunities for collaborations.

###

Media Contact
Ms. Zheng Lin
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s00376-020-9300-x

Tags: AgricultureAtmospheric ScienceBusiness/EconomicsChemistry/Physics/Materials SciencesEarth SciencePolicy/Ethics
Share12Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hydrocolloids Boost Orally Disintegrating Film Performance

Muscle Bursting Signals Impulse Control Issues in Parkinson’s

Racial Gaps in Cardiovascular Risk Control in Obesity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.