• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

BladeSense research advances rotor blade health monitoring

Bioengineer by Bioengineer
May 14, 2020
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UK Government-funded helicopter project yields promising results

IMAGE

Credit: Airbus Helicopters in the UK

Airbus Helicopters in the UK is exploring future activities to follow on from a four-year research project, in conjunction with Cranfield University, that has shown strong potential for advancing the state-of-the-art in measuring deformation of helicopter rotor blades in the rotating frame.

The BladeSense project, a £2 million programme supported with a £1 million grant from Innovate UK, via the Aerospace Technology Institute (ATI), examined the use of novel optical fibre sensors, measuring strain and shape, to monitor blade behaviour in real-time.

It holds out the prospect of substantially saving on lifecycle costs through continuous in-flight data collection. This will not only open up new pathways for rotor blade performance monitoring, but also provide blade usage data that is currently impossible to obtain in operational environments.

In the course of the project, the rotor blades of an Airbus H135 helicopter were fitted with fibre optic instrumentation. Data was successfully transferred to a remote ground station through a Wi-Fi link from specially designed instrumentation mounted on top of the rotor hub, during some four hours of ground running with the 5m rotors operating at up to 400rpm.

The research was a collaboration between Airbus Helicopters UK, the Dynamics, Simulation and Control group and The Centre for Engineering Photonics at Cranfield University. Simone Weber, Technology Integration Manager at Airbus Helicopters in the UK was embedded at Cranfield University. Helitune of Torrington, UK provided the on-board vehicle monitoring unit,
and fluid engineering specialists BHR Group (UK) of Cranfield supplied the mathematical model predicting the mechanical loads.

Future test scenarios under examination envisage flight-testing of the system and investigation of the exploitation of the concept in the helicopter design phase.

Head of Design and Customisation at Airbus Helicopters in the UK, Richard Atack, said: “We’ve made real progress in an advanced field of work with the potential to bring important benefits in terms of performance monitoring and environmental impact. And we’ve done that by
capitalising on people, skills and technical know-how right here in the UK at Airbus and with our partners. Now we are very interested to see what we can do next to advance our capabilities even further.”

Dr Mudassir Lone, Senior Lecturer in Flight Dynamics in the Dynamics, Simulation and Control Group at Cranfield University said, “The success of the final series of tests reflects the ability of the UK R&D environment to deliver unique and industrially relevant research, due to the close collaboration in both the available expertise and facilities”.

Professor Ralph Tatam, Head of the Centre for Engineering Photonics at Cranfield University, said: “This was a fantastic team effort from all the partners to demonstrate that the novel interferometric fibre optic shape measurement, pioneered at Cranfield, works in this challenging environment. This opens the way for this technology to be applied across a range of sectors including aerospace, energy, transport and healthcare”.

###

Media Contact
Chris Leaman
[email protected]

Tags: Algorithms/ModelsComputer ScienceMechanical EngineeringResearch/DevelopmentTechnology TransferTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Preterm Birth Linked to Long-Term Health Risks: URI Study Urges Adult Health Records Update

Preterm Birth Linked to Long-Term Health Risks: URI Study Urges Adult Health Records Update

August 5, 2025
HPV Anogenital Neoplasia Care: Europe Survey

HPV Anogenital Neoplasia Care: Europe Survey

August 5, 2025

Global Study Reveals Diabetes Drug Use in 62 Countries

August 5, 2025

Novel Arsenate-Reducing Bacteria Aid Soil Remediation

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    71 shares
    Share 28 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preterm Birth Linked to Long-Term Health Risks: URI Study Urges Adult Health Records Update

HPV Anogenital Neoplasia Care: Europe Survey

Global Study Reveals Diabetes Drug Use in 62 Countries

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.