• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers find one-two punch may help fight against Salmonella

Bioengineer by Bioengineer
May 14, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Natural product dephostatin is an effective partner for the antibiotic colistin in treating infections caused by the bacteria Salmonella

IMAGE

Credit: McMaster University

Hamilton, ON (May 14, 2020) – McMaster University researchers have discovered a combination punch to treat drug-resistant infections that is showing promise based on testing in mice.

Researchers found that a natural product called dephostatin is an effective partner for the antibiotic colistin in treating infections caused by the bacteria Salmonella.

Colistin is considered a last-resort antibiotic for multidrug-resistant bacterial infections due its toxic effect on the body, which has limited its use in medicine. However, when paired together, dephostatin allowed for drastically lower concentrations of colistin in a treatment regimen for Salmonella infection in mice that maintained the antibiotic’s effectiveness.

The study details are published in Cell Chemical Biology.

“The rise of antibiotic resistance has ushered in the post-antibiotic age, and alternatives to antibiotics are urgently required,” said Caressa Tsai, first author of the study and a PhD student in biochemistry and biomedical sciences in the Coombes lab at McMaster. “Solving the antibiotic resistance crisis will require us to shift away from the traditional view of antibiotic discovery.”

The World Health Organization has classified antibiotic-resistant Salmonella, which can cause infection from eating contaminated foods, as a high-priority pathogen.

In their study, researchers found that dephostatin does not kill Salmonella or stop it from growing. Instead, dephostatin prevents Salmonella from causing infection in two ways: It blocks its ability to resist being killed by immune cells and it enhances its sensitivity to colistin.

While the initial findings were done using a method of experimentation called high-throughput screening, the researchers were excited to find that co-administering dephostatin and colistin in mice with a lethal Salmonella infection significantly prolonged animal survival and used a lower concentration of colistin than is normally required for treatment, thereby reducing its toxic effect.

By the numbers, treatment with colistin alone extended survival of almost 88 per cent of mice to approximately five days post infection and 25 per cent of mice survived to the end of the experiment. However, more than 62 per cent of mice treated with both dephostatin and colistin survived the infection, indicating a significant improvement over therapy with one antibiotic.

“Traditional antibiotics all work in a similar way – they clear infections by killing bacteria,” said Tsai. “Here, we were interested in a different approach – keeping bacteria alive, but chemically inactivating important pathways to prevent them from causing infection.”

Researchers are continuing their research to understand how dephostatin works against Salmonella. Their ongoing work will explore the activity of dephostatin alone and in combination therapies during the treatment of infected animals.

“Dephostatin appears to knock out two important regulatory pathways that control Salmonella virulence and antibiotic resistance mechanisms,” said Coombes, corresponding author and a professor in the Department of Biochemistry and Biomedical Sciences at McMaster University. He holds the Canada Research Chair in Infectious Disease Pathogenesis.

“This research highlights the opportunities in taking a different approach than traditional antibiotic discovery and is enabling new drug combinations to emerge.”

###

The study is funded by the Canadian Institutes of Health Research and the Boris Family Fund for Health Research Excellence.

Editors:

Photos attached of Caressa Tsai and Brian Coombes.

Photo captions:

Caressa Tsai is a PhD student in biochemistry and biomedical sciences at McMaster University. Photo courtesy McMaster University

Brian Coombes is a professor in the Department of Biochemistry and Biomedical Sciences at McMaster University and the Canada Research Chair in Infectious Disease Pathogenesis. Photo courtesy McMaster University

For more information:

Veronica McGuire

Media Relations

McMaster University

[email protected]

905-525-9140, ext. 22169

Media Contact
Veronica McGuire
[email protected]

Tags: Medicine/HealthPharmaceutical ChemistryPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025
Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025

Wirth Named Fellow of the American Physical Society

October 10, 2025

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1233 shares
    Share 492 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Stable LiCl Electrolyte with In-Situ Anion Receptor

Dietary Diversity Impacts Daily Life in Older Chinese

Enhanced Ethanol Oxidation via Pd–Ag Nanoparticles on WO3

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.