• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

DNA metabarcoding reveals metacommunity dynamics in a threatened boreal wetland

Bioengineer by Bioengineer
May 12, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Donald Baird

The ability to accurately detect changes in ecosystem biodiversity caused by human activity has long challenged environmental scientists and ecologists, but a new study, published in PNAS, has established new DNA-based methods that are effective for environmental assessment and monitoring.

Led by researchers from Environment and Climate Change Canada’s Water Science and Technology Directorate and the Hajibabaei Lab at the University of Guelph, the study focused on at-risk wetlands in the Peace-Athabasca Delta (PAD) located in northern Alberta, Canada. The PAD is a large inland wetland complex threatened by encroachment from oil sands mining in the Athabasca watershed and hydroelectric dams in the Peace watershed.

“For more than a decade, we have been working closely with scientists from Environment and Climate Change Canada to develop and apply high-throughput DNA based biodiversity analysis for monitoring key ecosystems across Canada,” said Dr. Mehrdad Hajibabaei, a co-author of the study, and a professor in the Department of Integrative Biology at the University of Guelph. “This study is a key contribution from this collaborative effort to bring cutting-edge genomics to ecological analyses.”

Aquatic macroinvertebrates were sampled between 2011 and 2016 across a gradient of wetland flood frequency, applying both microscope-based morphological identification and DNA metabarcoding — a method first introduced by Hajibabaei Lab in 2011. DNA metabarcoding involves sequencing environmental DNA (eDNA) to identify many organisms within the same environmental sample. By using multispecies occupancy models (MSOMS) — a model used to assess biodiversity through species richness and interactions — the study found that DNA metabarcoding detected a much broader range of biodiversity per sample compared to traditional morphological identification and was essential to identifying significant responses to flood and thermal regimes.

“By using massively parallel sequencing and advanced computational analysis, DNA metabarcoding overcomes critical chokepoints in biomonitoring,” said Hajibabaei. “It allows processing large number of samples without the need of separating and sorting tiny larvae. It uses sequences from the DNA barcoding gene to make taxonomic identification often at a better resolution than achievable by morphological examination.”

The study demonstrates that family-level occupancy masks high variation among genera and quantify the bias of barcoding primers on the probability of detection in a natural community. It also revealed that patters of community assembly were nearly random, suggesting a strong role of randomness in the dynamics of the metacommunity.

“Until now, our ability to make consistent and accurate identifications of the hundreds of species which comprise these hyper-diverse and dynamic communities has limited our ability to make broad statements about how resource developments are degrading critical goods and services needed by migratory birds and wildlife,” said Dr. Donald Baird, federal scientist with Environment and Climate Change Canada. “These impacts can have knock-on consequences for local communities who rely on these critical habitats for food security,” said Baird, who co-authored the study and is actively involved in monitoring wetlands in Alberta’s oil sands region.

Simulations used in the study also demonstrated that metabarcoding was much more efficient, especially in a more precise taxonomic resolution, and provided the statistical strength required to detect change on a broader, landscape-level scale.

“Being able to demonstrate DNA metabarcoding as an effective tool in ecological analyses across space and time, and in critical ecosystems such as the Peace-Athabasca Delta, is an important stepping-stone for broader application of this approach,” said Hajibabaei.

Hajibabaei is currently applying the study’s DNA metabarcoding approaches to assess key watersheds across Canada in a new program called STREAM. Launched last year in partnership with World Wildlife Fund-Canada, Living Lakes Canada, Environment and Climate Change Canada, STREAM is establishing a nationwide network of community-based biomonitoring programs.

###

Media Contact
Mehrdad Hajibabaei
[email protected]

Original Source

https://news.uoguelph.ca/2020/05/study-proves-u-of-g-dna-metabarcoding-effective-for-monitoring-biodiversity/

Related Journal Article

http://dx.doi.org/10.1073/pnas.1918741117

Tags: BiodiversityBioinformaticsBiologyEcology/EnvironmentMarine/Freshwater BiologyMolecular BiologyNaturePollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

Streamlined Genomes, Maximum Efficiency: How Symbiotic Bacteria with Minimal DNA Deliver Optimal Support to Their Hosts

Streamlined Genomes, Maximum Efficiency: How Symbiotic Bacteria with Minimal DNA Deliver Optimal Support to Their Hosts

August 14, 2025
Unveiling Biomarkers and Pathogenesis of Myocardial Infarction Linked to Ankylosing Spondylitis Through Systems Biology

Unveiling Biomarkers and Pathogenesis of Myocardial Infarction Linked to Ankylosing Spondylitis Through Systems Biology

August 14, 2025

Amyloid-Based Antiphage Defense in E. coli Uncovered

August 14, 2025

Critically Endangered Plains-Wanderer Discovered in Uncharted Habitat

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Restoring Tissue Macrophages to Fight Aging, Cancer

SwRI Unveils GAMES: A Novel Chemistry LLM to Accelerate Drug Discovery

Optimizing C3N5 Nanosheets for Superior Supercapacitor Electrodes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.