• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

USF researchers find human-driven pollution alters the environment even underground

Bioengineer by Bioengineer
May 8, 2020
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of South Florida

The Monte Conca cave system on the island of Sicily is a vast system of springs and pools, sitting below a nature preserve. It might be presumed to be one of the few places untouched by human-driven pollution.

But new research published by a USF microbiology and geoscience team has found that even below ground, the microbial communities in the pools of water in the Monte Conca cave show signs of being altered by pollution from above.

Publishing in the prestigious journal, PLoS One, the team found that water flowing through the vast cave system produced changes in the microbial communities between the wet and dry seasons, with the microbial communities differing in bacterial composition and ecological functions. The study suggests that as surface water flows through agricultural and urban areas, it collects bacterial contaminants before entering cave systems.

The purpose of the study was to determine the impact surface runoff has on cave microbial communities using the Monte Conca spring pool as a model. The long-term impacts of these surface-derived bacterial contaminants or their impact on groundwater sources is currently not well known, said lead author Dr. Madison Davis of USF’s Department of Cell Biology, Microbiology and Molecular Biology.

The project was led by USF Professor James Garey of the Department of Cell Biology, Microbiology and Molecular Biology, and Professor Bogdan P. Onac of USF’s School of Geosciences. USF graduate and undergraduate students Madison C. Davis, Melvin D. Baker IV, Christiana K. S. Mayne, Chelsea M. Dinon and Christina J. Moss are co-authors on the paper.

The group collaborated with Italian colleagues Maria A. Messina, Giuseppe Nicolosi and Salvatore Petralia of Centro Speleologico Etneoa.

The scientists found that the dry season microbial community was dominated by sulfur-oxidizing bacteria because of their ability to utilize oxygen from the cave and hydrogen sulfide from the spring pool. After a heavy rainfall, the sulfur-oxidizing community was displaced by surface-derived bacteria that were primarily identified as human contaminants, including Escherichia coli and other fecal bacteria.

Caves like Monte Conca – which is Sicily’s longest and deepest gypsum karst system and was formed by sulfuric acid dissolution – have been identified worldwide. To carry out their work, researchers traveled into the cave system to retrieve samples in four missions spanning 2015 and 2016.

Sulfur oxidizers comprised more than 90 percent of the microbial community during the dry season and were replaced by potential human-influenced contaminants such as Escherichia and Lysinibacillus species after heavy rains, the researchers said. One sampling appeared to show a transition between the wet and dry seasons when potential man-made contaminants, sulfur-oxidizing bacteria and nitrogen-fixing bacteria all were present within the spring pool.

The study demonstrates the impact of surface runoff on the microbial community structure and function of endemic cave communities, the researchers said.

###

Media Contact
Tina Meketa
[email protected]

Original Source

http://spark.adobe.com/page/0MZgtm6LAGWIB/

Tags: Earth ScienceGeology/SoilPaleontology
Share12Tweet8Share2ShareShareShare2

Related Posts

New Theoretical Model Illuminates Ovarian Aging, Paving the Way for Breakthroughs in Women’s Health

New Theoretical Model Illuminates Ovarian Aging, Paving the Way for Breakthroughs in Women’s Health

August 28, 2025
Genetic Insights into Rabbit Intramuscular Fat Development

Genetic Insights into Rabbit Intramuscular Fat Development

August 28, 2025

HTSNPedia: A Genetic Database for Hypertension Insights

August 28, 2025

Enhancing Soy 11S Globulin Extraction with Chaotropes

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Theoretical Model Illuminates Ovarian Aging, Paving the Way for Breakthroughs in Women’s Health

Study Reveals Wildfire Mitigation Strategies Could Reduce Destruction by 50%

Bridging the Gap: Tech Use in German Hospitals

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.