• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Clemson scientist receives $455K NSF grant to study how flowers adapt to heat and cold

Bioengineer by Bioengineer
May 8, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Matthew Koski, an assistant professor at Clemson, will advance his research with a 3-year, $455,000 grant from the National Science Foundation

IMAGE

Credit: Courtesy of Dustin Fleetwood

CLEMSON, South Carolina – While the world admires the beauty and fragrance of flowers, most of us are missing out on the extraordinary processes these seemingly delicate life forms are carrying out every moment of the day.

Matthew Koski, an assistant professor in the College of Science’s department of biological sciences, is not only paying attention, he is advancing his research with a three-year, $455,000 grant from the National Science Foundation for a study of flower adaptations titled “Modifying the floral microenvironment: elevational divergence in floral thermoregulatory mechanisms.”

“What we’ll be doing is learning about how the internal organs of flowers thermoregulate, and how plants can modify the thermal environment of the pollen and ovules,” Koski said.

Plants respond to heat and cold in remarkable ways.

“Organisms experience thermal stress all the time,” Koski said. “In animals, they can move to suitable microclimates. If it gets too hot, they go in the shade. Plants can’t do that, so flowering plants have evolved mechanisms to modify their floral temperatures to make them more suitable for the function of their pollen and ovules.”

Though Koski’s research involving pollen color is the cover story of the April issue of The Journal of Evolutionary Biology, there is no pollen color variation in the population he will study under this grant.

“I’m going to be looking at how flowers not only might warm themselves in cool environments, but cool themselves under high heat stress,” he said. “To do this, I’m going to be working on an elevation gradient in Colorado, almost at timberline and down at the sagebrush step. These are really different thermal environments and I’ll look at how flowers are locally adapted to these environments.”

This will mean a month or two in Colorado each summer for at least the next three years. The hope is that travel will begin this summer, but Koski said work will likely begin in September on other aspects of the research, with field work starting in 2021.

“Dr. Koski’s work promises to help us understand how plants will cope with thermal stress under global change,” said Saara J. DeWalt, chair of the department of biological sciences. “Our department is excited to have another junior faculty member obtain competitive external funding to support their research.”

The research is important to Koski, his colleagues and students, but it has far-reaching implications as well.

“You’ve probably seen flowers that close at night and open during the day,” Koski said.

This can occur – in day lilies, for example – for a variety of adaptive reasons.

“One is that it maintains a more constant thermal environment over the 24-hour period,” Koski said. “Flowers can retain heat by closing petals. On the other hand, flowers that are overheated can reduce heat attenuation by opening petals. There are differences in the timing of when this occurs during the day, and there are differences in the angles at which petals are held. If you think of a bowl-shaped circular flower, they can act like little satellite dishes. If you change the angle of your petals, it can influence how much solar radiation the flowers are going to attenuate.”

This is one of several traits Koski will consider as he explores how flowers can adapt to climate change.

“Floral temperature is of huge importance under increasing temperatures globally,” he said. “We’ve known a lot of the ways flowers can warm up in really cold environments, but there is less work done on understanding how flowers can cool themselves.”

###

This material is based upon work supported by the National Science Foundation under Grant No. 2015459. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF. The exact amount of the grant is $455,869.

By Chris Worthy

Media Contact
Jim Melvin
[email protected]

Original Source

https://newsstand.clemson.edu/mediarelations/clemson-scientist-receives-455k-nsf-grant-to-study-how-flowers-adapt-to-heat-and-cold/

Tags: BiodiversityBiologyBiomechanics/BiophysicsClimate ChangeMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Personalized Guide to Understanding and Reducing Chemicals

Inflammasome Protein ASC Drives Pancreatic Cancer Metabolism

Phage-Antibiotic Combo Beats Resistant Peritoneal Infection

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.