• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Researchers have found accumulation of gene mutations in chronic Graft-versus-host disease

Bioengineer by Bioengineer
May 7, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Daehong Kim

Mutations in white blood cells can contribute to abnormal immune profile after hematopoietic stem cell transplantation.

Graft-versus-host disease (GvHD) is a potentially life-threatening medical condition that is common after allogeneic hematopoietic stem cell transplantation, the only curative treatment for various types of leukemias. In GvHD, white blood cells from transplant donor recognize recipient cells as non-self and attack recipient tissues. Understanding how these donor white blood cells remain active against recipient cells can pave the way for novel treatment strategies in GvHD.

A research project led by Professor Satu Mustjoki at the University of Helsinki investigated the role of T cell mutations in GvHD. Somatic or so-called acquired mutations during lifetime are common in cancer cells, but little is known about their existence and significance in other cells, such as cells in the body’s defense system.

Published in the journal Nature Communications, the study first identified an index chronic GvHD patient with an activating somatic mutation in a gene called mTOR, which regulates cell growth and cell survival.

The authors then screened an international cohort of 135 GvHD patients and 54 healthy blood donors. By using next generation sequencing, the scientists found that 2.2% of chronic GvHD patients, but none of the healthy blood donors, harbored a mutation in mTOR.

“What makes our finding particularly significant is that the mutation now found was recurrent, meaning that the same mutation was found in several patients with chronic GvHD,” says professor Satu Mustjoki.

“Our previous studies in rheumatoid arthritis had shown that acquired mutations could be found in T cells, but in these studies, the mutations had been isolated and the same mutations had not been found in more than one patient.”

Individualized treatments for patients

Using single-cell RNA sequencing and T cell receptor sequencing on samples collected from the index patient, researchers found that the mTOR mutated CD4+ T cell clone expanded during the course of GvHD despite immunosuppressive treatment, suggesting the mutation contributed to the disease pathogenesis.

In addition, it was found that the mutation was located in so-called cytotoxic T cells and these cells were able to damage the body’s own cells. Researchers also investigated the mTOR mutation in more detail by introducing it into a human cell line. The activating mTOR mutation promoted cell proliferation and cell survival.

The researchers performed a high-throughput drug screen with 527 drugs to identify potential targeted therapies. The index patients’ CD4+ T cells were sensitive to a specific class of drugs called HSP90 inhibitors, suggesting that these drugs could be used to treat GvHD in the future.

“Our study helps to understand the mechanisms of activation of the immune system in GvHD. Although several different drug combinations have been tried in the treatment of GvHD, using our results, it is possible to find individualized treatments for patients”, says doctoral candidate Daehong Kim from the University of Helsinki.

Further studies using larger cohorts of GvHD are warranted to understand whether clonal mutations in T cells modify GvHD severity, drug responses and clinical outcome.

###

Media Contact
Satu Mustjoki
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-16115-w

Tags: cancerGeneticsMedicine/HealthTransplantation
Share12Tweet8Share2ShareShareShare2

Related Posts

Athletes’ Health Perceptions Don’t Always Match Body Satisfaction, ECU Study Reveals

November 11, 2025

Infralesional Lipidome Changes in Ob/Ob Kidney Tubules

November 11, 2025

Sylvester Researchers Deliver Over 35 Oral Presentations at ASH 2025 Annual Meeting

November 11, 2025

Ginsenoside Rh2: A Novel PIN1 Inhibitor Against Cancer Stem Cells

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Athletes’ Health Perceptions Don’t Always Match Body Satisfaction, ECU Study Reveals

Infralesional Lipidome Changes in Ob/Ob Kidney Tubules

Hidden Catalysis: Everyday Lab Gear Turns into Powerful Reagents Through Abrasion

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.