• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Free and open-source hardware enables more bang for your buck in research funding

Bioengineer by Bioengineer
May 6, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Karankumar C. Dhankani, Joshua M. Pearce

FOSH is rapidly gaining momentum as part of a global “open design movement”, whereby the free release of information on customized research hardware, such as design, schematics and bill of materials are easily accessible anywhere with an internet connection.

This information can then be fed into 3D printing devices for hassle-free and cost-effective manufacturing which, after the initial investment of a 3D printer, would only be as expensive as the raw printing materials. This enables rapid and much less expensive hardware to be produced, which can be produced rapidly at scale, such as ventilators during the current pandemic.

The study is the first national-level one of its kind, and the group included Ismo Heikkinen, Hele Savin, Jouni Partanen and Jukka Seppälä from Aalto, and visiting Fulbright Finland professor, Joshua Pearce, from Michigan Technological University. Pearce explains the reason behind using Finland as the country to base their study on, ‘Finland has a superior education system which is focused on specializations in science, and it has a very approachable scale. However, in saying that, the approach of strategic support of open hardware design applies to any country’.

Pearce and his colleagues looked at all the research infrastructures & facilities in Finland and calculated the savings in a scenario where all of the research hardware (that is over 10K in value) would be converted to free & open source.’ We looked at the infrastructure that made the most sense to open source first and then determined how much could be saved on research capital costs alone’.

FOSH research priorities for Finland would include developing open-source transmission electron microscopes and scanning electron microscopes

The study concluded that conservatively speaking, FOSH development of two-electron microscopy tools would save Finland over 40m€ so equivalent level of nano-scale imaging could be obtained. Similarly, millions of Euros would be saved nation-wide, while significantly strengthening Finland’s atomic layer deposition (ALD)-related research excellence.

Overall, the results indicate Finnish science funders could save millions of Euros annually on scientific equipment purchases if all hardware costing over 10,000€/item is converted to FOSH. Furthermore, the majority of this would become ‘on shore’ production, currently carried out by equipment manufacturers in other countries.

Pearce says, ‘I believe it’s of significant national/European interest. We have looked at how Finland could strategically alter how science funding is allocated to save millions of Euros a year while getting better equipment, reducing imports, and improving the national economy’.

Pearce explains that the money saved from FOSH will prove invaluable elsewhere in the research, ‘Instead of doing the same amount of science innovation for less money – the concept we were using was to do more science innovation for the same amount of money. Maybe even ten times more! The idea was if x-million is allocated for equipment instead of spending x-amount to purchase the equipment, you will spend a fraction of it to do open-source hardware design. Then in the next year instead of buying one tool, you could buy ten or more of the same thing and help many more researchers go faster’.

Pearce points out, ‘In my lab, we have saved hundreds of thousands easily. In the paper – the open hardware that already exists has saved substantial money. Estimates on open-source syringe pumps alone are that they have saved scientists millions and that is only one device. Hardware X, the open hardware journal for science, just published its 100th design – and in general, those devices are saving about 90% off the purchase cost of proprietary tools. Frankly, spending money to buy black-box hardware is a waste of money if there is an open-source option’.

###

Media Contact
Joshua Pearce
[email protected]

Original Source

https://doi.org/10.1016/j.techfore.2020.119986

Related Journal Article

http://dx.doi.org/10.1016/j.techfore.2020.119986

Tags: HardwareResearch/DevelopmentRobotry/Artificial IntelligenceTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Hanyang University Researchers Unveil Digital Twin Framework to Boost Sustainability and Efficiency in Modular Building Design

Hanyang University Researchers Unveil Digital Twin Framework to Boost Sustainability and Efficiency in Modular Building Design

August 14, 2025
Innovative Patterning Technique Paves the Way for Next-Gen OLED Displays

Innovative Patterning Technique Paves the Way for Next-Gen OLED Displays

August 14, 2025

Artificial Intelligence Drives Advances in Solid-State Battery Material Screening and Performance Assessment

August 14, 2025

Breakthrough Discovery: Microbial DNA Signature Distinguishes Two Types of Liver Cancer

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hanyang University Researchers Unveil Digital Twin Framework to Boost Sustainability and Efficiency in Modular Building Design

Innovative Patterning Technique Paves the Way for Next-Gen OLED Displays

Artificial Intelligence Drives Advances in Solid-State Battery Material Screening and Performance Assessment

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.