• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Improving immunotherapy for cancer

Bioengineer by Bioengineer
April 29, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cause for the lack of immune defense against tumors discovered

IMAGE

Credit: A. Heddergott / TUM

Our immune system not only protects us against infection, but also against cancer. This powerful protection is based in particular on the activation of special cells of the immune system, CD8+ T cells. These cells recognize infected or cancer cells and kill them specifically.

“The ability of the immune system and especially CD8+ T cells to eliminate cancer cells in tissues such as the lung, gut and liver is often limited in tumor patients,” explains Percy Knolle, Professor of Molecular Immunology at the Technical University of Munich (TUM).

Administration of antibodies can reinvigorate the cancer patient´s immune response

Cancer cells send out signals that slow down the immune response against them. The knowledge of how tumor-specific immunity is restricted by these signals has led to the development of immunotherapies against cancer through what is referred to as checkpoint inhibition.

In this form of therapy, the signals emitted by cancer cells are inhibited and unleash cancer-specific immunity. Administration of antibodies that target these signals (“checkpoint inhibition”) often can reinvigorate the patient´s immune response against the tumor.

Novel suppressive mechanism discovered that inhibits cancer-specific immune responses

The TUM research group led by Dr. Bastian Höchst and Prof. Percy Knolle at the Freising-Weihenstephan site and the University Hospital Klinikum rechts der Isar in Munich, together with researchers from the University of Heidelberg and the Otto von Guericke University Magdeburg as well as Yale University in the US, has discovered a novel mechanism of suppression that inhibits cancer-specific immune responses.

According to their recent publication, this suppression is mediated by a breakdown product from glucose metabolism. A particular type of myeloid immune cell (myeloid suppressor cells), which suppresses the activation of CD8+ T cells, are often found near and in tumor tissues. They are known to severely limit cancer-specific immunity.

“We were able to identify the excessive production of the breakdown product from glucose metabolism as a characteristic feature of suppressor cells in the tumor and at the same time to attribute inhibition of cancer-specific immunity to this suppressive metabolite,” explained Dr. Bastian Höchst.

New method to activate immune cells to kill tumor cells

The researchers found that inhibition of cancer-specific CD8+ T cells is enforced by this suppressive metabolite through depletion of amino acids that are essential for the activation of immune cells. Such inhibited immune cells remain alive, but are arrested in hibernation-like state of low metabolic activity.

The researchers succeeded in developing methods, with which these “hibernating” immune cells can be re-awakened. The combination of “checkpoint inhibition” with neutralization of the suppressive metabolite led to a strong increase in cancer-specific immune response in experiments.

“These results will lead the way to development of new forms of immunotherapy against cancer,” summarized Prof. Knolle.

###

Media Contact
Percy A. Knolle
[email protected]

Original Source

https://www.tum.de/nc/en/about-tum/news/press-releases/details/36023/

Related Journal Article

http://dx.doi.org/10.1038/s41590-020-0666-9

Tags: cancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Infralesional Lipidome Changes in Ob/Ob Kidney Tubules

November 11, 2025

Sylvester Researchers Deliver Over 35 Oral Presentations at ASH 2025 Annual Meeting

November 11, 2025

Ginsenoside Rh2: A Novel PIN1 Inhibitor Against Cancer Stem Cells

November 11, 2025

Kangaroo Care Boosts Weight Gain in Low Birth Weight Infants

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Infralesional Lipidome Changes in Ob/Ob Kidney Tubules

Hidden Catalysis: Everyday Lab Gear Turns into Powerful Reagents Through Abrasion

Sylvester Researchers Deliver Over 35 Oral Presentations at ASH 2025 Annual Meeting

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.