• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Success in specific detection of molecules using deformation of a single atomic sheet

Bioengineer by Bioengineer
April 28, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Towards diagnostic techniques using smartphones

IMAGE

Credit: COPYRIGHT (C) TOYOHASHI UNIVERSITY OF TECHNOLOGY. ALL RIGHTS RESERVED.

Overview

Associate Prof. Kazuhiro Takahashi and Mr. Shin Kidane (Master’s Program) of the Department of Electrical and Electronic Information Engineering at Toyohashi University of Technology and others developed a test chip using graphene, a sheet material with a thickness of one carbon atom. The chip has a trampoline structure with a narrow gap of 1 micrometer or less formed under a monoatomic graphene film, and can specifically trap a biomarker, a protein included in bodily fluids such as blood, urine or saliva which is derived from a disease, on graphene. The biomarker adsorbed by the graphene generates force which deforms the graphene into a dome shape. The group thus succeeded in detecting the amount of deformation as changes in color using the interference properties of light. It is expected that viruses and diseases will be able to be simply and quickly examined using the developed test chip.

Details

A measuring device to simply and quickly examine a disease is extremely important for accurate diagnosis, verification of therapeutic effects, and investigation of recurrence and metastasis. If diseases can be examined using a very minute amount of body fluid such as blood or urine, physical condition can be simply, quickly and cheaply controlled. A test technique for determining the presence or absence of a disease by specifically trapping a biomarker on a flexibly deformable thin film formed using semiconductor micromachining techniques, has been investigated. The research group has developed a sensor technique for detecting film deformation caused when a marker molecule is adsorbed as changes in color. As the thickness of the film to adsorb the biomarker decreases, the sensitivity of this sensor element can be increased. It is thus expected that the sensitivity of the sensor will be improved by 1000 times or more using a material called graphene, a material with a thickness of 1 nanometer or less, formed from a single atomic layer.

In a previous report using suspended graphene in a bridge shape, however, changes at the time of physical adsorption of a molecule to suspended graphene were measured, and it was difficult to specifically detect the molecule to be measured. As for the reason for this, it is thought that since modification using an antibody to recognize and specifically bind a molecule is commonly carried out in a solution, the suspended structure of graphene was destroyed during the solution treatment.

The research team, therefore, made a trampoline structure in which the unevenness of the substrate was covered with a graphene sheet, as a suspended structure of graphene which could withstand the solution treatment, and were able to modify graphene with an antibody molecule. The surface of the graphene was functionalized with an antibody molecule to provide the ability to recognize a molecule, and an ultrasensitive biosensor which could specifically detect a biomarker was able to be produced. A light detection technique unique to the research team was used as a technique for detecting a biomarker bound to the surface of the graphene. In a gap of 1 micrometer or less between the suspended graphene and the semiconductor substrate, color is changed depending on the length of the gap by the interference action of light. Using this effect, the appearance of a molecule adsorbed to suspended graphene in a test solution was revealed by changes in color. According to the biosensing technique developed this time, it is expected that sensitivity per unit area will be improved to 2000 times that of conventional sensors.

Future Outlook

In addition to blood tests, the research team has also investigated a chemical sensor to detect odors and chemical substances, and feels that the sensor can be applied to a novel compact sensor device contributing to IoT society. The sensor can be applied to the detection of various biomarkers and also to the detection of viruses by changing the probe molecules modifying the surface of the graphene.

###

This work was supported by Grant-in-Aid for Scientific Research (B), Innovative nano-electronics through interdisciplinary collaboration among material, device and system layers (JPMJPR1526) from the Precursory Research for Embryonic Science and Technology of Japan Science and Technology Agency, and the Uncharted Territory Challenge 2050 from New Energy and Industrial Technology Development Organization (NEDO).

Reference

Shin Kidane, Hayato Ishida, Kazuaki Sawada, Kazuhiro Takahashi, A suspended graphene-based optical interferometric surface stress sensor for selective biomolecular detection, Nanoscale Advances, 2, 1431-1436 (2020) DOI: 10.1039/C9NA00788A

Media Contact
Yuko Ito
[email protected]

Related Journal Article

http://dx.doi.org/10.1039/C9NA00788A

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyElectrical Engineering/ElectronicsMechanical EngineeringNanotechnology/MicromachinesResearch/DevelopmentSuperconductors/SemiconductorsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
blank

Opposing ATPases and ALKBH1 Shape Chromatin, Stress Response

August 15, 2025

Multifocus Microscope Breaks New Ground in Rapid 3D Live Biological Imaging

August 15, 2025

Ancient Cephalopod Unveiled: Nautilus Exhibits Surprising Sex Chromosome System

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

One in Three U.S. Adults Unaware of HPV’s Link to Cancer

Obesity Patients’ Struggles Seeking Support Uncovered

Plug-and-Play System Boosts Streptomyces Metabolite Production

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.