• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

It takes a neutron beam to find a proton

Bioengineer by Bioengineer
April 27, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Osaka University use neutron crystallography to pinpoint hydrogen atoms and protons in the structure of a large enzyme and reveal previously unreported behavior

IMAGE

Credit: Osaka University

Osaka – Understanding the behavior of proteins and enzymes is key to unlocking the secrets of biological processes. The atomic structures of proteins are generally investigated using X-ray crystallography; however, the precise information for hydrogen atoms and protons (hydrogen ions) is usually unattainable. Now a team including Osaka University, Osaka Medical College, National Institutes for Quantum and Radiological Science and Technology, Ibaraki University, and University of Tsukuba has used neutron crystallography to reveal high-resolution structural details of a very large oxidase protein. Their findings are published in PNAS.

The hydrogen atoms and protons that make up about half of the atoms in proteins and enzymes often play crucial roles in the jobs these biomolecules do; however, their exact positions are difficult to pinpoint because of their small size. The most common approach for working out the structure of a protein is to direct a beam of high-energy X-rays at a protein crystal and analyze the diffraction pattern that results from the interactions of the X-rays with the electrons of atoms in the structure. Unfortunately, X-rays do not interact strongly with hydrogen atoms or protons, which have low or no electron density, making them difficult to “see.”

One solution is to apply a neutron beam to the crystal instead of X-rays. Neutrons interact with the nuclei of the atoms in their path, including those of hydrogen atoms and protons, despite them being small. The diffraction patterns resulting from these interactions are recorded after the neutron beam has passed through the crystal, and are decoded into the precise locations of the nuclei, including the hydrogen nuclei.

“Hydrogen atoms and protons are particularly interesting components of enzyme structures because they can exhibit quantum behaviors that have recently been found to be crucial to enzyme function. It is therefore important to accurately determine their locations in the protein structure in order to unravel what is happening,” study corresponding author Toshihide Okajima explains. “Using neutron crystallography, we were able to determine the structure of a bacterial copper amine oxidase with a molecular weight of 70,600–which is extremely large for neutron crystallography and significantly exceeds previously recorded molecular masses–and still precisely locate the hydrogen atoms and protons in the structure. An unusual “levitated” proton was observed between a cofactor, topa quinone, and an amino acid residue strictly conserved in this class of enzymes.”

The topa quinone cofactor covalently bound to the enzyme plays an essential role in the catalytic function. The researchers were finally able to establish a complete picture of topa quinone 30 years after its discovery as a protein-derived cofactor. They found that the cofactor actually exists in equilibrium between two different forms.

“Enzyme active sites–where the reactions take place–can provide us a great deal of information and inspiration if we are able to fully understand what is happening,” Okajima explains. “Our demonstration of using neutron crystallography to uncover proton quantum effects promises to be very useful for many researchers studying enzymes and their mechanisms.”

###

The article, “Neutron crystallography of copper amine oxidase reveals keto/enolate interconversion of the quinone cofactor and unusual proton sharing” was published in PNAS at DOI: https://doi.org/10.1073/pnas.1922538117

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan’s leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan’s most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university’s ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Media Contact
Saori Obayashi
[email protected]

Related Journal Article

http://dx.doi.org/10.1073/pnas.1922538117

Tags: BiochemistryBiologyMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Didn’t catch the live session? Watch the full recording now!

Didn’t catch the live session? Watch the full recording now!

November 12, 2025
Scientists Discover True Ferrielectric Material, Unveiling New Polar Order

Scientists Discover True Ferrielectric Material, Unveiling New Polar Order

November 11, 2025

Revolutionary Laser Cooling Achieved: Stable Molecule Trapped Using Deep Ultraviolet Light

November 11, 2025

Breakthrough Oligomer-Based Organic Photodetector Achieves Peak Photoresponse at 1200 nm

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neurological Impacts of COVID and MIS-C in Children

Validating Schema Modes for Eating Disorders and Personality

Sex-Dependent Meat Quality in Xiaoxiang Chickens Uncovered

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.