• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Superconductivity: It’s hydrogen’s fault

Bioengineer by Bioengineer
April 27, 2020
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Nickel is supposed to herald a new age of superconductivity — but this is proving more difficult than expected. Scientists at TU Wien (Vienna) can now explain why.

IMAGE

Credit: TU Wien

Last summer, a new age for high-temperature superconductivity was proclaimed – the nickel age. It was discovered that there are promising superconductors in a special class of materials, the so-called nickelates, which can conduct electric current without any resistance even at high temperatures.

However, it soon became apparent that these initially spectacular results from Stanford could not be reproduced by other research groups. TU Wien (Vienna) has now found the reason for this: In some nickelates additional hydrogen atoms are incorporated into the material structure. This completely changes the electrical behaviour of the material. In the production of the new superconductors, this effect must now be taken into account.

The search for High-Temperature Superconductors

Some materials are only superconducting near absolute temperature zero – such superconductors are not suitable for technical applications. Therefore, for decades, people have been looking for materials that remain superconducting even at higher temperatures. In the 1980s, “high-temperature superconductors” were discovered. What is referred to as “high temperatures” in this context, however, is still very cold: even high-temperature superconductors must be cooled strongly in order to obtain their superconducting properties. Therefore, the search for new superconductors at even higher temperatures continues.

“For a long time, special attention was paid to so-called cuprates, i.e. compounds containing copper. This is why we also speak of the copper age”, explains Prof. Karsten Held from the Institute of Solid State Physics at TU Wien. “With these cuprates, some important progress was made, even though there are still many open questions in the theory of high-temperature superconductivity today”.

But for some time now, other possibilities have also been under consideration. There was already a so-called “iron age” based on iron-containing superconductors. In summer 2019, the research group of Harold Y. Hwang’s research group from Stanford then succeeded in demonstrating high-temperature superconductivity in nickelates. “Based on our calculations, we already proposed nickelates as superconductors 10 years ago, but they were somewhat different from the ones that have now been discovered. They are related to cuprates, but contain nickel instead of copper atoms,” says Karsten Held.

The Trouble with Hydrogen

After some initial enthusiasm, however, it has become apparent in recent months that nickelate superconductors are more difficult to produce than initially thought. Other research groups reported that their nickelates do not have superconducting properties. This apparent contradiction has now been clarified at TU Wien.

“We analysed the nickelates with the help of supercomputers and found that they are extremely receptive to hydrogen into the material,” reports Liang Si (TU Vienna). In the synthesis of certain nickelates, hydrogen atoms can be incorporated, which completely changes the electronic properties of the material. “However, this does not happen with all nickelates,” says Liang Si, “Our calculations show that for most of them, it is energetically more favourable to incorporate hydrogen, but not for the nickelates from Stanford. Even small changes in the synthesis conditions can make a difference.” Last Friday (on 24.04.2020) the group around Ariando Ariando from the NUS Singapore could report that they also succeeded in producing superconducting nickelates. They let the hydrogen that is released in the production process escape immediately.

Calculating the Critical Temperature with Supercomputers

At TU Wien new computer calculation methods are being developed and used to understand and predict the properties of nickelates. “Since a large number of quantum-physical particles always play a role here at the same time, the calculations are extremely complex,” says Liang Si, “But by combining different methods, we are now even able to estimate the critical temperature up to which the various materials are superconducting. Such reliable calculations have not been possible before.”
In particular, the team at TU Wien was able to calculate the allowed range of strontium concentration for which the nickelates are superconducting – and this prediction has now been confirmed in experiment.

“High-temperature superconductivity is an extremely complex and difficult field of research,” says Karsten Held. “The new nickelate superconductors, together with our theoretical understanding and the predictive power of computer calculations, open up a whole new perspective on the great dream of solid state physics: a superconductor at ambient temperature that hence works without any cooling.”

###

Contact

Prof. Karsten Held

Institute for Solid State Physics

TU Wien

Wiedner Hauptstraße 8-10, 1040 Vienna

T +43-1-58801-13710

[email protected]

Media Contact
Florian Aigner
[email protected]

Original Source

https://www.tuwien.at/en/tu-wien/news/news-articles/news/superconductivity-its-hydrogens-fault/

Related Journal Article

http://dx.doi.org/10.1103/PhysRevLett.124.166402

Tags: Chemistry/Physics/Materials SciencesMaterialsSuperconductors/Semiconductors
Share12Tweet8Share2ShareShareShare2

Related Posts

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

August 15, 2025
Efficient Framework Models Ionic Materials’ Surface Chemistry

Efficient Framework Models Ionic Materials’ Surface Chemistry

August 15, 2025

Discovery of Intrinsic HOTI-Type Topological Hinge States in Photonic Metamaterials

August 15, 2025

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.