• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, December 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Rice wins fed grant to advance sickle cell disease therapy

Bioengineer by Bioengineer
April 24, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bioengineer Gang Bao studies genome-editing outcomes to enable a future clinical trial

IMAGE

Credit: Jeff Fitlow/Rice University

HOUSTON – (April 24, 2020) – A Rice University lab has won a prestigious National Institutes of Health grant to pursue gene-editing research it hopes will lead to a cure for sickle cell disease (SCD).

The four-year R01 grant to Gang Bao, Rice’s Foyt Family Professor of Bioengineering and a professor of chemistry and of materials science and nanoengineering, is worth $2.45 million. The grant will be administered by the National Heart, Lung and Blood Institute.

It will facilitate a Brown School of Engineering study of the outcomes of CRISPR-Cas9 based editing of the beta-globin gene in hematopoietic stem/progenitor cells (HSPC) from patients with SCD, including the use of next-generation sequencing tools to quantify chromosomal rearrangements and assess the risk of inducing beta thalassemia in patients.

Sickle cell disease, which affects about 100,000 Americans and millions worldwide, is a painful and often fatal inherited condition. A single mutation in hemoglobin subunit beta (aka beta-globin) forces normal, disc-shaped red blood cells to stiffen and take characteristic “sickle” shapes. These cells can damage vessel walls and clot small blood vessels, stopping the delivery of oxygen to tissues.

Of the many projects underway in his lab, a cure for sickle cell disease has been Bao’s top priority for many years, long before he joined Rice in 2015. A recent study showed CRISPR-Cas9 based editing of HSPC cells from patients with SCD has the ability to repair them so cells differentiated from them display no signs of the disease phenotype. But not all HSPCs could have the sickle mutation corrected; some showed cuts by Cas9 but no replacement of the mutant sequence, and others had no edits at all.

Bao said that on average, 25% of the HSPCs from patients were gene-corrected, with donor DNA inserted into the genome. “But there’s no integration of donor DNA in around 45% of cells that show cutting, and there’s always a fraction that has no cutting.” Bao found that blood cells from HSPCs with cutting only showed an increased level of fetal hemoglobin, which is beneficial to patients. However, the mechanism of such phenomena remains elusive.

The researchers also want to be sure that CRISPR-Cas9 editing would not lead to beta thalassemia, a blood disorder that reduces the production of hemoglobin.

“Before we address these three issues due to Cas9 cutting, i.e., mechanism of inducing fetal hemoglobin, chromosomal rearrangements and the possibility of causing beta thalassemia, applying for a clinical trial might be premature,” Bao said. The study supported by the R01 grant enables the Bao lab to address all three issues.

###

This news release can be found online at https://news.rice.edu/2020/04/24/rice-wins-fed-grant-to-advance-sickle-cell-disease-therapy/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

New genetic weapons challenge sickle cell disease: http://news.rice.edu/2019/06/03/new-genetic-weapons-challenge-sickle-cell-disease-2/

Laboratory of Biomolecular Engineering and Nanomedicine (Bao lab): http://bao.rice.edu

Department of Bioengineering: https://bioengineering.rice.edu

George R. Brown School of Engineering: https://engineering.rice.edu

Image for download:

https://news-network.rice.edu/news/files/2020/04/0427_R01-1-web.jpg
p>CAPTION: Gang Bao. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,962 undergraduates and 3,027 graduate students, Rice’s undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 4 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance.

Jeff Falk

713-348-6775

[email protected]

Mike Williams

713-348-6728

[email protected]

Media Contact
Mike Williams
[email protected]

Original Source

https://news.rice.edu/2020/04/24/rice-wins-fed-grant-to-advance-sickle-cell-disease-therapy/

Tags: Gene TherapyGeneticsHematologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Assessing the K-NHSPSC: Korean Patient Safety Culture Insights

December 20, 2025

Spot Urine CA 19-9: New Insights in Pediatric Hydronephrosis

December 20, 2025

Discharge Choices for Elderly Surgical Patients Explored

December 20, 2025

Health Needs Influence Care Utilization in Women Veterans

December 20, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing the K-NHSPSC: Korean Patient Safety Culture Insights

Spot Urine CA 19-9: New Insights in Pediatric Hydronephrosis

Discharge Choices for Elderly Surgical Patients Explored

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.