• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 30, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

The origin of feces: coproID reliably predicts sources of ancient poop

Bioengineer by Bioengineer
April 17, 2020
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New method of discerning sources of ancient feces makes this archaeological find far more informative

IMAGE

Credit: Jada Ko, courtesy of the Anhui Provincial Institute of Cultural Relics and Archaeology

The archaeological record is littered with feces, a potential goldmine for insights into ancient health and diet, parasite evolution, and the ecology and evolution of the microbiome. The main problem for researchers is determining whose feces is under examination. A recent study published in the journal PeerJ, led by Maxime Borry and Christina Warinner of Max Planck Institute for the Science of Human History (MPI-SHH), presents “CoproID: a reliable method of inferring sources of paleofeces.”

Machine learning enables reliable classification

After thousands of years, the source of a particular piece of feces can be difficult to determine. Distinguishing human and dog feces is particularly difficult: they are similar in size and shape, occur at the same archaeological sites, and have similar compositions. In addition, dogs were on the menu for many ancient societies, and our canine friends have a tendency to scavenge on human feces, thus making simple genetic tests problematic, as such analyses can return DNA from both species.

In order to access the insights contained within paleofeces, the researchers developed coproID (coprolite identification). The method combines analysis of ancient host DNA with a machine learning software trained on the microbiomes within modern feces. Applying coproID to both newly sequenced and previously published datasets, the team of researchers from the MPI-SHH, Harvard University, and the University of Oklahoma were able to reliably predict the sources of ancient feces, showing that a combination of host DNA and the distinct colonies of microbes living inside humans and dogs allow their feces to be accurately distinguished.

Classification capability provides insights into digestive health

“One unexpected finding of our study is the realization that the archaeological record is full of dog poop,” says Professor Christina Warinner, senior author of the study. But Warinner also expects coproID to have broader applications, especially in the fields of forensics, ecology, and microbiome sciences.

The ability to accurately identify the source of archaeological feces enables the direct investigation of changes in the structure and function of the human gut microbiome throughout time, which researchers hope will provide insights into food intolerances and a host of other issues in human health. “Identifying human coprolites should be the first step for ancient human microbiome analysis,” says the study’s first author, Maxime Borry.

“With additional data about the gut metagenomes of non-Westernized rural dogs, we’ll be better able to classify even more ancient dog feces as in fact being canine, as opposed to ‘uncertain,'” Borry adds. As the catalog of human and dog microbiome data grows, coproID will continue to improve its classifications and better aid researchers that encounter paleofeces in a range of geographic and historical contexts.

###

Publication information:

Title: CoproID predicts the source of coprolites and paleofeces using microbiome composition and host DNA content

Authors: Maxime Borry et al.

Publication: PeerJ

DOI: 10.7717/peerj.9001

Media Contacts:

Maxime Borry (UTC +01:00)

Department of Archaeogenetics

Max Planck Institute for the Science of Human History

Email: [email protected]

Christina Warinner (UTC -05:00)

Group Leader, Microbiome Sciences

Department of Archaeogenetics

Max Planck Institute for the Science of Human History

Jena, Germany

Email: [email protected]

Assistant Professor

Department of Anthropology

Harvard University

Cambridge, MA USA

Email: [email protected]

Phone: +1 617 949 0495

See also: http://christinawarinner.com

AJ Zeilstra / Petra Mader

Max Planck Institute for the Science of Human History

Public Relations & Press Office

Kahlaische Str. 10

07745 Jena

GERMANY

Phone: +49 (0) 3641 686-950 / 960

Email: [email protected]

Media Contact
Maxime Borry
[email protected]

Related Journal Article

http://dx.doi.org/10.7717/peerj.9001

Tags: ArchaeologyBiologyComputer ScienceFood/Food ScienceGeneticsNew WorldNutrition/NutrientsOld WorldZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Sacubitril/Valsartan Improves Hypertensive Heart Disease Outcomes

Sacubitril/Valsartan Improves Hypertensive Heart Disease Outcomes

July 30, 2025
Mixed-Meal Tolerance Test: A Novel Appetite Assay

Mixed-Meal Tolerance Test: A Novel Appetite Assay

July 30, 2025

Mimicking Mammal Hibernation to Enhance Organ Preservation

July 30, 2025

P16-Positive Senescent Cells Drive DKD via Metabolic Dysfunction

July 30, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    58 shares
    Share 23 Tweet 15
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sacubitril/Valsartan Improves Hypertensive Heart Disease Outcomes

Acoustophoretic Seed Separation Revolutionizes Conveyor Sorting

Dog Ownership’s ‘Pawsitive’ Impact on Child Neurodevelopment

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.