• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Machine learning reveals new candidate materials for biocompatible electronics

Bioengineer by Bioengineer
April 9, 2020
in Science News
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Image courtesy of Kirill Shmilovich et al.

Scientists and engineers are on a quest to develop electronic devices that are compatible with our bodies: think of materials that can help wire neurons back together after brain injuries, or diagnostic tools that can easily be absorbed within the body.

A family of self-assembling peptides, called π-conjugated oligopeptides, has shown promise for becoming the basis of the next-generation of these electronic, biocompatible materials. But identifying the right molecular sequences to create the optimal self-assembled nanostructures would require testing thousands of possibilities that each take approximately one month to test in the lab.

Assoc. Prof. Andrew Ferguson and his collaborators have sped up that process by developing machine learning tools that can screen for the best candidates. By screening 8,000 candidates of self-assembled peptides, the team was able to rank each design. That paves the way for experimentalists to test the most promising candidates.

The results were published in the journal J. Phys. Chem. B. The paper was also selected as the ACS Editors’ Choice, which offers free public access to new research of importance to the global scientific community, and to be featured on the journal cover.

“By understanding data science, materials science, and molecular science, we were able to find an innovative way to screen for new possible candidates,” Ferguson said. “The fact that this paper was chosen as an ACS Editors’ Choice shows that there is a lot of interest in coupling artificial intelligence to domain science. It’s an important problem that is of broad interest to the physical chemistry community.”

Ranking peptides for experimentalists

To help find the best candidates, Ferguson and graduate student Kirill Shmilovich screened a family of π-conjugated oligopeptides using machine learning and molecular simulation. The set included 8,000 potential peptides, if researchers kept the same core and just changed the three amino acids on each side of the molecule. (The amino acids on the sides are symmetrical — if you change one on one side, it changes on the other side, as well.)

Using a form of machine learning known as active learning or Bayesian optimization to guide molecular simulations, they were able to construct reliable data-driven models of how the sequence of the peptide influenced its properties after considering only 186 peptides.

The model predictions could then be reliably extrapolated to predict the properties of the rest of the peptide family. The process also removed human bias from the equation, letting artificial intelligence find features of peptide designs that researchers hadn’t considered before that actually made them better candidates.

They then ranked each peptide and handed off their results to their experimental collaborators, who will then test the top candidates in the lab. Next, they hope to expand their system to include trying out different π-conjugated cores, while feeding new experimental data back into the loop to further strengthen their models.

They also hope to use this machine learning system for designing proteins, optimizing self-assembling colloids to make atomic crystals, and even to one day incorporate these tools into a self-driving laboratory, where artificial intelligence would take data, create predictions, run experiments, then feed that data back to the model — all without human intervention.

“This is a method that could be useful in many different domains,” Ferguson said.

###

Co-authors include PME undergraduate student Olivia E. Dunne; former postdoctoral researcher Hythem Sidky; Rachael A. Mansbach of Los Alamos National Laboratory; and Sayak Subhra Panda and John D. Tovar of Johns Hopkins University.

Citation: “Discovery of Self-Assembling π-Conjugated Peptides by Active Learning-Directed Coarse-Grained Molecular Simulation,” Shmilovich et. al. J. Phys. Chem. B 2020. doi.org/10.1021/acs.jpcb.0c00708

Funding: National Science Foundation

Media Contact
Ryan Goodwin
[email protected]

Original Source

https://pme.uchicago.edu/news/machine-learning-reveals-new-candidate-materials-biocompatible-electronics

Related Journal Article

http://dx.doi.org/10.1021/acs.jpcb.0c00708

Tags: Chemistry/Physics/Materials SciencesMaterialsPolymer ChemistryRobotry/Artificial Intelligence
Share12Tweet8Share2ShareShareShare2

Related Posts

Non-Invasive Serum N-Glycomics for Detecting Liver Disease

December 25, 2025

Healthcare Insights on Peer Support in Brain Injury Care

December 25, 2025

Tailoring Cellular Structures for Precise Nonlinear Mechanics

December 25, 2025

Key Risk Factors for Type 1 Diabetes Hypoglycemia

December 25, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Non-Invasive Serum N-Glycomics for Detecting Liver Disease

Healthcare Insights on Peer Support in Brain Injury Care

Tailoring Cellular Structures for Precise Nonlinear Mechanics

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.