• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists predict the size of plastics animals can eat

Bioengineer by Bioengineer
March 27, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New equation could help determine risk of plastics to any species — and amount of plastic entering food chains

IMAGE

Credit: Cardiff University


A team of scientists at Cardiff University has, for the first time, developed a way of predicting the size of plastics different animals are likely to ingest.

The researchers, from the University’s Water Research Institute, looked at the gut contents of more than 2,000 animals to create a simple equation to predict the size of a plastic item an animal can eat, based on the length of its body.

In the study, published today in Nature Communications, they report that the length of an animal can be used to estimate the biggest piece of plastic it can eat – and this was about 5% (a twentieth) of the size of the animal.

The researchers say that as the plastic pollution problem escalates, it is vital to be able to quickly assess the risk of plastics to different species around the world.

This work could also help scientists measure the risk of plastic pollution to ecosystems and food supplies – and ultimately the risk to human health.

By trawling through published data, the team found plastics ingested by marine and freshwater mammals, reptiles, fishes and invertebrates, from 9mm-long fish larvae to a 10m-long humpback whale.

During their research they found some shocking examples of the extent of plastic pollution, including hosepipes and flower pots in a sperm whale, plastic banana bags inside green turtles and a shotgun cartridge in a True’s beaked whale.

Co-lead author of the study Dr Ifan Jâms said: “We still know very little about the way most animals feed in the wild, so it’s difficult to figure out how much plastic they could be eating.

“This information gives us a way to start measuring the extent of the plastic pollution problem.

“We hope this study lays a foundation for including the ‘ingestibility’ of plastics into global risk assessments.

“We also hope this work will encourage more sophisticated assessments of the amount of plastic that may be moving into global ecosystems and food supplies.”

Project leader Professor Isabelle Durance said: “All of us will have seen distressing, often heart-breaking, images of animals affected by plastic, but a great many more interactions between animals and plastic are never witnessed. This study gives us a new way of visualising those many, many unseen events.

“While we understand increasingly where concentrations of plastic in the world’s aquatic ecosystems are greatest, it’s only through work like this that we can know which animals are likely to be in danger from ingesting it.

“Through this work, we can also begin to understand how much plastic is entering global food webs or human foods, for example, because we know the general sizes of plastic likely to be taken in by zooplankton or fishes.

“We recognise that our research is part of wider efforts and there is still more work to do to quantify the risks from smaller plastic fragments or to understand the damage caused by plastic ingestion, but we hope this work helps the world to address its growing plastic problem.”

The researchers said further work was needed to look at how and where terrestrial animals eat plastic to predict wider risks.

###

Media Contact
Gerry Holt
[email protected]
029-208-75596

Original Source

https://www.cardiff.ac.uk/news/view/1902705-scientists-predict-the-size-of-plastics-animals-can-eat

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-15406-6

Tags: BiologyEcology/EnvironmentMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.