• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A new window into psychosis

Bioengineer by Bioengineer
March 18, 2020
in Chemistry
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers link psychosis to the omission of chemical rewards in mouse brains

IMAGE

Credit: © 2020 Yagishita et al.


A recent study in mice led a team of researchers in Japan to believe that psychosis may be caused by problems with specialized nerve cells deep within the brain, as well as a certain kind of learning behavior. The researchers hope this could provide insight into the emergence of delusions in patients with psychosis or schizophrenia with the aim of finding ways to help them.

Psychosis is a debilitating psychological condition with a long history. Described in the medical writings of Hippocrates as early as the 4th century B.C., the psychotic state of hallucinations, delusions and disordered thought represent an existential threat to an afflicted human mind. Now, a team of researchers from the International Research Center for Neurointelligence (IRCN) and the Graduate School of Medicine at the University of Tokyo, and the Graduate School of Informatics at Kyoto University, proposes that psychosis involves defective neural signaling in a deep brain area called the ventral striatum during a behavior called discrimination learning.

Led by Lecturer Sho Yagishita and Professor Haruo Kasai, the researchers studied the way mice predict future rewards in their environment, a behavior known as reward learning, which is shared by us humans and other mammals, too. Reward learning involves the release of a chemical messenger dopamine to a receptor protein in the brain called dopamine D1 receptor (D1R) to signal the anticipation of a reward. Specifically, the team searched for a second dopamine signal that occurs only when the anticipated reward fails to materialize — reward omission.

The researchers suspected this signal for reward omission existed in neurons of the ventral striatum area of the brain that contain a counterpart to D1R, dopamine D2 receptor (D2R). Coincidentally, D2R is the major brain receptor for nearly every antipsychotic medication used to date. The team showed that reward omission triggers a signal in these neurons called the dopamine dip, a drop in dopamine levels, which lasts less than a second.

These dips seem to contribute to the process of discrimination learning, which includes how all animals, including humans, judge previously learned rewards and punishments. To explore the connection between dips and discrimination learning, the researchers used sophisticated optogenetic technologies to artificially increase or decrease the dips for the first time and measured their effects on how the mice estimated rewards. Optogenetics is a way to activate artificial light-sensitive proteins with finely controlled laser light to turn neuronal activity on or off.

“We initially observed that dips caused certain synaptic structures called spines to expand and send signals within D2R neurons,” said Yagishita. “We searched for several years before we discovered that discrimination learning was the cognitive process that refines reward learning following dopamine dips.”

To establish a link to psychosis, the authors administered a well-known psychosis-inducing drug, methamphetamine, and showed that both discrimination learning and dopamine dips were impaired. As a result, mice showed exaggerated behavioral and dopamine responses even when no reward was presented, as is the case in human psychosis. These deficits could be prevented with an antipsychotic compound that blocks D2R activity.

“If D2R signaling and discrimination learning is impaired, subjects may be unable to assign an appropriate significance to objects or people in their environment, and their fears or insecurities may fill in the gap,” said Yagishita. “For example, persecutory delusions arise from mistakenly assigning malevolent intent to strangers who pose no threat.”

The authors propose that these findings open a previously unknown window into psychosis. Their data show that an antipsychotic D2R drug can reverse effects of a psychosis-inducing one by specifically restoring the dopamine dips and discrimination learning to normal levels. Their hypothesis is that an impairment in discrimination learning can result in an inability to predict the environment accurately, leading to overt symptoms of psychosis or schizophrenia.

“The brain seems to have an intrinsic capacity for fantasy or delusional thinking, but there are built-in controls like D2R discrimination learning that help us to correct our misjudgments,” commented Kasai. “Our study raises the possibility that when these corrective controls break down, we can risk losing contact with reality and may enter a downward spiral of pathology.”

Looking ahead, Kasai concluded, “We hope to build a general learning model to accommodate clinical disorders of cognition that can also lead to new principles for next-generation AI (artificial intelligence).”

This research is a peer-reviewed experimental study in mice.

###

Journal Article

Iino, Y., Sawada, T., Yamaguchi, K., Tajiri, M., Ishii, S., Kasai, H., Yagishita, S. Dopamine D2 receptors in discrimination learning and spine enlargement. Nature, 2020/03/19, DOI: 10.1038/s41586-020-2115-1

This work was supported by CREST (JPMJCR1652 to H.K.) from JST, SRPBS (JP19dm0107120 to H.K.), Brain/MINDS (19dm0207069h0001 to S.Y.) from AMED, Grants-in-Aid (No. 26221001 to H.K.; 19K16249, 16H06395, 16H06396 and 16K21720 to S.Y.) from JSPS, the World Premier International Research Center Initiative (WPI) from MEXT, Takeda Science Foundation (to S.Y.), and The Naito Foundation (to Y.I.). M.T. and T.S. are the Research Fellows for Young Scientists of JSPS.

International Research Center for Neurointelligence – https://ircn.jp/en/

Graduate School of Medicine – http://www.m.u-tokyo.ac.jp/english/

Graduate School of Informatics, Kyoto University – http://www.i.kyoto-u.ac.jp/en/

Research Contact

Sho Yagishita, M.D., Ph.D.

International Research Center for Neurointelligence (IRCN), The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN

Tel: +81-3-5841-1440

Email: [email protected]

Press Contacts

Ms. Mayuki Satake

International Research Center for Neurointelligence (IRCN), The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, JAPAN

Tel: +81-3-5841-4140

Email: [email protected]

Mr. Rohan Mehra

Division for Strategic Public Relations, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN

Tel: +81-080-9707-8450

Email: [email protected]

About the University of Tokyo

The University of Tokyo is Japan’s leading university and one of the world’s top research universities. The vast research output of some 6,000 researchers is published in the world’s top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at https://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

Media Contact
Sho Yagishita
[email protected]
81-358-411-440

Original Source

https://www.u-tokyo.ac.jp/focus/en/press/z0508_00095.html

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-2115-1

Tags: Cell BiologyDiagnosticsMedicine/HealthneurobiologyNeurochemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    83 shares
    Share 33 Tweet 21
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Tadpole Buccopharyngeal Morphology in Sphaenorhynchini

Triglyceride-Glucose and Waist Circumference: Diabetes Risk Insights

Cinnamon Extracts: Impact on Musca domestica Responses

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.