• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Hollow-core fiber technology closes in on mainstream optical fiber

Bioengineer by Bioengineer
March 17, 2020
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Southampton


Researchers from the Zepler Institute for Photonics and Nanoelectronics at the University of Southampton have demonstrated a new leap in hollow-core fibre performance, underlining the technology’s potential to soon eclipse current optical fibres.

Hollow-core fibres replace conventional glass cores with gas or a vacuum to enable unique properties including faster light speed and reduced sensitivity to environmental variations.

The novel technology, which is being advanced in the Zepler Institute’s renowned Optoelectronics Research Centre (ORC), is believed able to reach lower loss and higher data transmission capacity than all-solid glass fibres, with current research accelerating models toward this peak performance.

Southampton researchers and collaborators are presenting the latest findings in San Diego this week in two high profile post-deadline papers at OFC 2020, the world’s largest optical fibre communication conference.

The newest hollow-core fibres attenuate the light traveling through it by 50% less than the previous record, reported only six months ago. The maximum transmission length at which data can be relayed in such revolutionary fibres has also doubled.

Thanks to an innovative design proposed at the ORC, in the space of 18 months the attenuation in data-transmitting hollow-core fibres has been reduced by over a factor of 10, from 3.5dB/km to only 0.28 dB/km within a factor of two of the attenuation of conventional all-glass fibre technology. At the same time, the maximum transmission distance at which large bandwidth data streams can be transmitted through an air-core has been improved by over 10 times, from 75 to 750km.

Professor Francesco Poletti, Head of the ORC’s hollow core fibre group, says: “Transmitting light in an air core rather than a glass core presents many advantages which could revolutionise optical communications as we know them. These latest results further reduce the performance gap between hollow core fibre and mainstream optical fibre technology, and the whole team is really excited by the prospect of the additional significant improvements that seem possible, according to modelling.

Latency, which is the round-trip time for communications, is becoming as important as bandwidth for the new digital economy. Network latency creates a delay between sensing and its response, causing sickness in AR/VR users, loss of fidelity in remote surgery and accidents in autonomous systems. These fibres deliver a vital 30% reduction in round-trip data transmission times and could enable the next generation of connected real-time digital applications, from smart manufacturing and advanced healthcare to the entertainment.”

The considerable improvements in attenuation and transmission distance demonstrated in these two works open up the possibility to target longer reach distances, edging close to the 1,000km span of typical long distance long haul terrestrial data transmission links.

Southampton researchers are pushing the boundaries of hollow-core performance in several major research programmes, including the European Research Council funded LightPipe and the Engineering and Physical Sciences Research Council (EPSRC) funded Airguide Photonics.

The team are working in close collaboration with one of the leading groups in advanced optical communications at the Politecnico di Torino, led by Professor Pierluigi Poggiolini, and ORC spinout Lumenisity.

###

Media Contact
Steve Bates
[email protected]
0238-059-3212

Tags: Computer ScienceElectrical Engineering/ElectronicsInternetOpticsResearch/DevelopmentTechnology TransferTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Tunable Metafibers Enable Remote 3D Focus Control

August 5, 2025
blank

Two-Step Lewy Body Detection via Smell and CSF

August 5, 2025

Bacterial Diversity Across Developmental Stages of Anopheles subpictus

August 5, 2025

CT Scans: Raised Arms Improve Clavicle Age Estimates

August 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tunable Metafibers Enable Remote 3D Focus Control

Two-Step Lewy Body Detection via Smell and CSF

Bacterial Diversity Across Developmental Stages of Anopheles subpictus

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.