• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Physicists propose new filter for blocking high-pitched sounds

Bioengineer by Bioengineer
March 17, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Robert Rivera, University at Buffalo; Luis Machado, Federal University of Pará in Brazil


BUFFALO, N.Y. — Need to reduce high-pitched noises? Science may have an answer.

In a new study, theoretical physicists report that materials made from tapered chains of spherical beads could help dampen sounds that lie at the upper range of human hearing or just beyond.

The impacts of such noises on health are uncertain. But some research suggests that effects could include nausea, headaches, dizziness, impaired hearing or other symptoms.

“There is a fair amount of ultrasonic stuff around us, and much of it has effects that are unknown. In warmer areas, you have pest control systems that are strongly reliant on ultrasonic emissions to drive out the pests. You have ultrasonics from machinery, from drilling. Certain lamps may emit these high-frequency noises,” says Surajit Sen, PhD, professor of physics in the University at Buffalo College of Arts and Sciences. “What does it do to our hearing? And in return, what does it do to our brain?

“Because of these unknowns, we thought it would be of potential value to design a system that kills off high-frequency sound.”

The new research appears in the February 2020 volume of Granular Matter and was published online in the journal in November 2019.

Sen co-authored the study with Luís Paulo Silveira Machado, PhD, professor of physics at the Federal University of Pará in Brazil. Machado did part of the work as a visiting scholar at UB with the financial support of his home university, and Sen’s research was partially supported by a Fulbright-Nehru Academic and Professional Excellence Fellowship.

The study used computational modeling to explore how well various materials would dampen incoming sounds with frequencies up to 20 kilohertz — high enough that only some people can hear these noises.

Machado and Sen researched a number of materials, all made from spherical beads of varying sizes surrounded by plastic walls.

The best set-up they found consisted of tapered chains of beads made from a metal called tungsten carbide, alternating with tapered chains of beads made from a plastic called Delrin. In computer simulations, this system effectively helped to filter high-frequency noises of varying loudness, greatly reducing these sounds.

The scientists have not yet tested the material in the laboratory. But if it works, the noise-filtering system could be used in headphones or other barriers that dampen high-frequency sound, the researchers say.

“An advantage of the proposed device is its simple configuration: spherical beads properly confined and positioned,” Machado says. “This proposal allows a prototype of easy construction, with low cost and little maintenance. In addition, its configuration is scalable, being adaptable for small or large volumes. Our next step is to redirect the output signals, which is under study.”

###

Media Contact
Charlotte Hsu
[email protected]
716-645-4655

Original Source

http://www.buffalo.edu/news/releases/2020/03/016.html

Related Journal Article

http://dx.doi.org/10.1007/s10035-019-0977-4

Tags: Chemistry/Physics/Materials SciencesMaterialsMathematics/StatisticsSystems/Chaos/Pattern Formation/Complexity
Share12Tweet8Share2ShareShareShare2

Related Posts

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

Why Beer Foam Stays So Stable: The Science Behind the Perfect Pour

August 26, 2025
SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

SwRI Scientist Heads Science Team for New NASA Heliophysics AI Foundation Model

August 26, 2025

Expanding Azole Chemistry with Precise N-Alkylation

August 26, 2025

Advancing Green Technology with More Efficient and Reliable SiC Devices

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

OLED-Driven Metasurfaces Enable Holographic Projections

Understanding Female-to-Female Aggression in Workspaces

Thirst in Post-Surgery Children: A Cross-Sectional Study

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.