• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Newly confirmed biochemical mechanism in cells is key component of the anti-ageing program

Bioengineer by Bioengineer
March 11, 2020
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jan Zwilling


Ageing is an inevitable part of life, yet some species are ageing very differently than others, even than very similar ones. Naked mole rats for example, an east African rodent of a size comparable to moles or mice, show a strongly delayed process of ageing and live up to 30 years. Scientists from Russia, Germany and Switzerland now confirmed a mechanism in mouse, bat and naked mole rat cells – a “mild depolarization” of the inner mitochondrial membrane – that is linked to ageing: Mild depolarization regulates the creation of mitochondrial reactive oxygen species (mROS) in cells and is therefore a mechanism of the anti-ageing program. In mice, this mechanism falls apart at the age of 1 year, while in naked mole rats this does not occur until ages of up to 20 years. This newly confirmed mechanism is described in detail in a paper published in the “Proceedings of the National Academy of Sciences of the USA”.

Mitochondrial reactive oxygen species (mROS) such as hydrogen peroxide are by-products of cell respiration and, in higher doses, associated with various diseases and ageing processes. There are different mechanisms at the inner and outer mitochondrial membranes that regulate the mROS production. Key function of cell respiration is energy production in the form of ATP (adenosine triphosphate) through coupling of mitochondrial respiratory chain complexes with ATP synthase. Different mitochondrial intermembrane space enzymes (hexokinases I + II and creatine kinase) have now been confirmed to slightly lower the membrane potential of the inner mitochondrial membrane (“mild depolarization”). This means that the differences in the electric load between the inner and the outer space of the mitochondria are lowered and the energy production through ATP synthesis is reduced to some extent. At the same time this leads to the cessation of mROS production. “The proof of this effect is implying that mild depolarization is a mechanism of the anti-ageing program, effectively slowing down ageing processes in the cell”, says senior author Vladimir Skulachev (Lomonosov Moscow State University).

The research team was able to show that both biochemical mechanisms do not operate in the same intensity and efficiency in different species and tissues and at different ages: The researchers examined the hexokinases I + II and creatine kinase mechanisms in various tissues (lung, kidney, brain, skeletal muscles, heart, and others) in mice (Mus musculus), naked mole rats (Heterocephalus glaber), and Seba’s short-tailed bats (Carollia perspicillata). They found interesting differences: Mild depolarization significantly starts decreasing after 1 year of age in mice with negligible levels after 24 months in skeletal muscles, diaphragm, heart, brain, and spleen. In lung and kidney tissue, mild depolarization decreases to a lesser extent with ageing. “The crumbling of the anti-ageing program in the cells starts after only a third of the average life span in mice, while the naked mole rats and Seba’s short-tailed bats maintain mild depolarisation and hence the suppression of mROS production up to high ages”, explain co-authors Thomas Hildebrandt and Susanne Holtze from the Leibniz Institute for Zoo and Wildlife Research (Leibniz-IZW). “This contributes to the extraordinary longevity of these species.”

These biochemical mechanisms explain how the ageing and the anti-ageing programs within cells function and are regulated. However, it has not yet been determined where and how these processes are activated and controlled. “The master biological clock has not yet been identified”, says lead author Mikhail Vyssokikh (Lomonosov Moscow State University). “We suspect it to be located in the suprachiasmatic nucleus of the hypothalamus, which is responsible for the circadian and seasonal rhythms.” This question and some other yet unknown components of the ageing and anti-ageing programs will be targets of high interest for future gerontological investigations.

###

Media Contact
Dr Susanne Holtze
[email protected]
49-305-168-436

Original Source

https://www.fv-berlin.de/en/info-for/the-media-and-public/news/forscherteam-beschreibt-erstmals-biochemischen-schluesselmechanismus-fuer-alterungsprozesse-in-maeusen-nacktmullen-und-fledermaeusen

Related Journal Article

http://dx.doi.org/10.1073/pnas.1916414117

Tags: AgingBiologyCell BiologyDevelopmental/Reproductive BiologyGerontologyZoology/Veterinary Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Dopamine Signals Trigger Skin Invasion in Nematodes

Dopamine Signals Trigger Skin Invasion in Nematodes

August 13, 2025
AASM Invites Abstracts and Award Submissions for Sleep Medicine Disruptors 2025

AASM Invites Abstracts and Award Submissions for Sleep Medicine Disruptors 2025

August 13, 2025

Decoding Early Drosophila Embryo Metabolism with Multi-Omics

August 13, 2025

FedECA: Federated External Control Arms for Survival Analysis

August 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CircMORC1 Loss Boosts Gastric Cancer Growth

Quantum Key Distribution Meets High-Speed Multi-Core Fiber

Dopamine Signals Trigger Skin Invasion in Nematodes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.