• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

FSU researchers help discover new genetic variants that cause heart disease in infants

Bioengineer by Bioengineer
March 6, 2020
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo courtesy of P. Bryant Chase.


Florida State University researchers working in an international collaboration have identified new genetic variants that cause heart disease in infants, and their research has led to novel insights into the role of a protein that affects how the heart pumps blood. It is a discovery that could lead to new treatments for people suffering from heart disease.

In two separate papers, Jose Pinto, an associate professor in the College of Medicine, and P. Bryant Chase, a professor in the Department of Biological Science, worked with doctoral students Jamie Johnston and Maicon Landim-Vieira to explore a disease that caused the heart to pump with too little force. Their work was published in the Journal of Biological Chemistry and in Frontiers in Physiology .

The researchers discovered new interactions within parts of a protein called troponin. Troponin has three parts — troponin C, troponin I and troponin T — that work together to regulate the heart’s pumping of blood. The FSU researchers uncovered interactions of troponin C with portions of troponin T that can decrease the force of the heartbeat, something scientists had not previously noticed.

“All of these proteins, they work like an orchestra,” Pinto said. “What is the main thing for an orchestra? To be in harmony, in balance. You need to have a good balance and you need to be in harmony, otherwise you will not produce good music. If one of these proteins is not in sync with the other proteins, you will not have your orchestra in harmony or balanced well, and then that will lead to the disease.”

Most previous work had focused on interactions between troponin C and troponin I, or between troponin T and another protein called tropomyosin. The new interaction between troponin C and troponin T is “an interaction that will modulate how much force the heart generates in each heartbeat,” Pinto said. “If you increase the number of these interactions, most likely you decrease contraction of the heart, and if you prevent these interactions, very likely you increase the force of contraction in each heartbeat.”

But science sometimes leads to more questions than answers. A related study by the same FSU researchers reported a new combination of genetic variants in a different part of troponin C that also caused heart disease in infants. Rather than uncovering new interactions among the parts of troponin, this study led researchers to conclude that there must be an unknown role for troponin, possibly in the cell nucleus, Chase said.

In that research, DNA sequencing showed that a mother and a father had different variants that both affected the troponin C protein. Although their cell function was altered in such a way that researchers expected them to have heart problems, they did not show signs of heart disease. Their children, however, had both variants, and though their cell functioning appeared to be more normal, they developed deadly heart disease.

“Some experiments provide a lot of immediate insight, but other times we find out that we just don’t understand everything that we think we do,” Chase said. “As much as we’ve learned, as much as we do understand, there’s a lot more that’s unknown. And it’s those times that can eventually lead to brand new, unexpected insights.”

Understanding the interactions between the parts of the troponin protein and also troponin’s various roles in heart cells will help guide new treatments for heart disease, both for the disease caused by the specific genetic variants the researchers discovered and for heart disease in general.

“These diseases are caused by seemingly small changes in the DNA,” Chase said. “There are genetic technologies to reverse that, to introduce the common DNA sequence, but applications of genetic technologies to human disease are in their infancy and there’s not a surefire and ethical way to apply changes in the genome to all the heart patients who could benefit from it. I’m sure there will be ways to correct genetic variants for a number of diseases, but the medical community is only just beginning to find out how to do that safely for people.”

###

Researchers from the FSU Translational Science Laboratory, Federal University of Rio de Janeiro, Federal University of Minas Gerais, Tel Aviv Sourasky Medical Center, Tel Aviv University and Yale University contributed to this work. The research was supported by the American Heart Association and the National Institutes of Health.

Media Contact
Bill Wellock
[email protected]
850-645-1504

Original Source

https://news.fsu.edu/news/health-medicine/2020/03/06/fsu-researchers-help-discover-new-genetic-variants-that-cause-heart-disease-in-infants/

Related Journal Article

http://dx.doi.org/10.1074/jbc.RA119.011177

Tags: CardiologyMedicine/HealthPediatrics
Share12Tweet8Share2ShareShareShare2

Related Posts

Monell Center Researchers Unveil Latest Discoveries at International Consumer Sensory Science Conference

Monell Center Researchers Unveil Latest Discoveries at International Consumer Sensory Science Conference

August 15, 2025
Orphan GPR52 Drives Constitutive Arrestin Recruitment Uniquely

Orphan GPR52 Drives Constitutive Arrestin Recruitment Uniquely

August 15, 2025

Innovative Technologies Poised to Enhance Care for Parkinson’s Patients

August 15, 2025

Humanized ALK Antibody-Drug Shows Cancer-Fighting Promise

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Monell Center Researchers Unveil Latest Discoveries at International Consumer Sensory Science Conference

Two Weill Cornell Medicine Scientists Honored with 2025 Pew Awards

Lehigh University’s Martin Harmer Recognized Among the Top 10 Global Science Breakthroughs of 2025 by Falling Walls Foundation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.