• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Virtualized metamaterials open door for acoustics application and beyond

Bioengineer by Bioengineer
March 3, 2020
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Prof. Jensen LI


Playing back recorded audio from a digital storage allows us to enjoy music without the physical presence of a musical instrument to generate resonating sound. In a seemingly unrelated area called metamaterials, scientists design different physical structures also resonating with sound or light, to achieve many intriguing phenomena such as negative refraction and invisibility.

Recently, scientists from the Hong Kong University of Science and Technology (HKUST), in collaboration with Seoul National University in Korea, have realized what they called a virtualized acoustic metamaterial, in digitizing material response to an impulse response stored in a software program. Such a digital representation is common in signal processing to construct filters but now as a new application to material science. The digital representation replaces the previous physical structures, leaving only a collection of microphones and speakers inter-connected with a backend microprocessor. The impulse response of the metamaterial is now simply a software program in generating any scattered wave with a tailor-made frequency dispersion. As such, the response of metamaterials can be made arbitrary and flexibly tuned by simply a click of button.

Their findings were published in the journal Nature Communications on January 14, 2020.

“Current approach in metamaterial research mimics the response of natural atoms by artificially constructed ones using resonating physical structures. But that suffers for a long time a limitation that the property cannot be tuned easily in a large range and in a dynamical fashion,” said Prof. Jensen LI Tsan-Hang of the Department of Physics, HKUST, who led the research. “This is particularly important for many realistic applications, such as a broadband stealth, that has to work in a dynamic and in a stringent environment.”

“Our work tackles this problem and provides a feasible approach to digitize the response into a software program. A digital representation of a metamaterial, by borrowing a popular concept of impulse response in signal processing, the response of metamaterial can be tuned and changed by simply a click of button to change the software program,” Prof. Li said.

While metamaterials have been showing high commercial values in terms of their superior performance in soundproofing, making compact meta-lens, etc., such a virtualization technology will further add huge tunability in terms of functions, assigning another level of meaning to “meta”, and allowing metamaterials to do broadband stealth, active sound absorption, super-resolution imaging, and beyond.

“With our approach, we can easily go into the active regime of metamaterials, in addition to the tunability we have mentioned. External electronics, in comparing to conventional metamaterials that consist of passive physical structures, can always provide power to the metamaterials,” said Prof. Namkyoo PARK, of the Department of Electrical and Computer Engineering, Seoul National University. “We are not restricted to metamaterials that can only be passive or dissipating power; any active response can be specified easily. We prove this in our work by realizing a metamaterial with amplified transmission much larger than value one.”

“By replacing the resonating physical structure with a designer mathematical convolution kernel with a fast digital signal processing circuit, we demonstrate a decoupled control of the effective bulk modulus and mass density of acoustic metamaterials on-demand through a software-defined frequency dispersion,” said Prof. Li. “Providing freely software-reconfigurable amplitude, center frequency, bandwidth of frequency dispersion, our approach adds an additional dimension to constructing non-reciprocal, non-Hermitian, and topological systems with time-varying capability as potential applications.”

The next step of the research group will involve building up a much larger version of meta-atoms of a metamaterial, which will allow researchers to further manipulate sound waves with properties that go beyond the current generation of metamaterials, such as broadband invisibility, extreme non-reciprocal transmission or sound proofing.

###

Media Contact
Johnny Tam
[email protected]
852-235-88556

Related Journal Article

http://dx.doi.org/10.1038/s41467-019-14124-y

Tags: AcousticsChemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    53 shares
    Share 21 Tweet 13
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ingestible Capsules Enable Microbe-Based Therapeutic Control

Bariatric Surgery’s Impact on Circulating S100A9

Engineering Receptors to Enhance Flagellin Detection

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.