• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

SUWA: A hyperstable artificial protein that does not denature in high temperatures above 100°C

Bioengineer by Bioengineer
February 28, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Copyright ©2012-2014 Suwa Tourism Association


Proteins denature, or “cook” in heat, irreversibly changing their structure, like how an egg boils or a slab of sirloin turns to steak. This prevents proteins from being used in applications where they would need to withstand heat. Scientists have had high expectations for proteins to be used in nanotechnology and synthetic biology. A new hyperstable artificial protein constructed at Shinshu University in collaboration with Princeton University hopes to make some of those aspirations possible with the successful development of SUWA (Super WA20), a nanobuilding block in the shape of a pillar, anointed so in honor of the Onbashira Matsuri, also known as “the pillar” festival where men climb on and slide down a mountain side on large timber logs, a holy tradition dating back 1,200 years. The lumber is then used to build the one of the main shrines of Japan, the Suwa Taisha. The hope is that these SUWA nano-pillars will go on to build things just as central to society.

Summary of this research:

  • A de novo protein SUWA (Super WA20) is significantly more stable than its predecessor WA20.

  • SUWA did not boil at 100 °C, while WA20 denatures at 75 °C. The denaturation midpoint temperature of SUWA protein was found to be 122 °C. This is an ultra-stabilized artificial protein.

  • The characteristic three-dimensional structure of the dimer with a bisecting U topology of SUWA was elucidated by X-ray crystallography.

  • Molecular dynamics simulation suggests that the stabilization of the center of the α-helices contributes to the structural stabilization and high heat resistance in SUWA.

  • Protein nanobuilding blocks using SUWA, nanoscale pillars “nano-onbashira” are expected to be applied to nanotechnology and synthetic biology research in the near future.

Proteins and self-assembling protein complexes perform functions inside the living body like nanomachines making them a key component in the complex phenomena of life. Artificial design of proteins with desired functions would have many applications in biopharmacy and provide chemical reactions with low environmental impact. This nanotechnology is in the scale of molecules, 1/1,000,000 of a millimeter, making them difficult to work with, but have many promising applications.

A research group led by Ryoichi Arai of Shinshu University and Michael H. Hecht of Princeton University solved the crystal structure of the de novo protein WA20 in 2012. This current research builds upon the WA20 structure, to make the Super WA20 –aka SUWA– recently explored in the paper published in the February issue of ACS Synthetic Biology, an American Chemical Society’s academic journal.

Associate Professor Ryoichi Arai of Shinshu University Interdisciplinary Cluster of Cutting Edge Research’s Institute for Biomedical Sciences and Naoya Kimura, a graduate of the Faculty of Textile Science and Technology of Shinshu University were central figures behind this new development of SUWA, a hyperstable artificial protein.

The naming of SUWA is derived from the location of the Onbashira Matsuri, which takes place in the Suwa region of Nagano Prefecture. Nagano is where Shinshu University holds its five campuses.

###

Media Contact
Hitomi Thompson
[email protected]
81-263-373-529

Related Journal Article

http://dx.doi.org/10.1021/acssynbio.9b00501

Tags: BiologyBiomedical/Environmental/Chemical EngineeringBiotechnologyMolecular BiologyNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Remote Healthcare: Stepped-Wedge Trial Insights

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.