• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Eat or be eaten

Bioengineer by Bioengineer
February 26, 2020
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Biodiversity increases the efficiency of energy use in grasslands

IMAGE

Credit: Alexandra Weigelt


For the first time, they did not just investigate one feeding type such as herbivores but the integrated feeding relationships across an entire ecosystem. Previous research examining the effects of biodiversity on the functioning of ecosystems focused mainly on single feeding levels (trophic levels) or simplified food chains.

“We have analyzed an entire feeding network – in other words, multitrophic interactions – above- and belowground. This is indispensable for understanding the effects resulting from global species extinction,” explained Dr. Sebastian T. Meyer, a researcher at the Chair for Terrestrial Ecology at the Technical University of Munich (TUM) and lead author of the study.

A network of energy

An aboveground food chain could extend from grasses to grasshoppers and on to spiders, for example. The research group examined how much energy flows into the system, how much remains in the system – so how much biomass is present in the system – and eventually, how much energy is leaving the system. The main insight: The entire ecosystem’s efficiency rises across all feeding levels when plant diversity increases.

“Seeing positive effects on one level does not imply that there cannot be simultaneous positive effects on other feeding levels,” said Dr. Meyer. When a grasshopper feeds on grasses until it is saturated, this does not necessarily result in negative effects on the plant level – with a high level of biodiversity, the system keeps itself in a balance.

Unique database from a grassland biodiversity experiment

The group worked with data gathered through the Jena Experiment, a large-scale grassland biodiversity experiment that has been running since 2002. The research environment provided by the experiment is unique in the world and allow for the synthesis of large amounts of data.

For each of the 80 plots of the Jena Experiment, the researchers assembled trophic network models of the grassland ecosystem. These contain the standing biomass on every feeding level and the flow of energy through feeding interactions between the trophic levels. In addition to plants, the study also covers herbivores, carnivores, omnivores, soil microbes, dead organic material aboveground and in the soil and decomposers that feed on these sources of organic matter.

More efficient energy use in ecosystems with higher plant diversity

“The study shows that higher plant diversity leads to more energy stored, greater energy flow and higher energy-use efficiency in the entire trophic network, therefore across all trophic levels,” explained Dr. Oksana Buzhdygan from Freie Universitaet Berlin, another lead author of the study.

Ecosystems with 60 plant species contained, on average, twice the amount of standing biomass in comparison to plant monocultures, which means that the total amount of resources used and recovered by plant and animal community rose with an increase in plant diversity.

Biodiversity as insurance against environmental fluctuations

“An enhanced ecosystem functionality on all levels can contribute to an increased insurance effect of biodiversity on ecosystem functions when environmental fluctuations occur; it also enhances the system’s robustness in case of perturbations,” Prof. Jana Petermann from the University of Salzburg concluded. She is the senior author of the study.

This research paper highlights the importance of biodiversity for functions in and services provided by ecosystems. For instance, agricultural land use that aims at yielding a wide range of goods and services should maintain high plant diversity, for example by planting mixed crops, in order to avoid losing ecosystem resources.

###

Further information:
In the so-called “Jena Experiment” (http://www.the-jena-experiment.de), scientists from various universities in Germany, the Netherlands and Switzerland study the significance of biological diversity (biodiversity) for ecosystems. Grasslands of varying diversity are used as a model system. In the year 2002, plant communities of 1-60 plant species and 1-4 plant functional groups (based on a species pool of 60 species) were sown to measure and compare flows in biogeochemical cycles and the interactions between organisms. The results show that a higher plant diversity leads to multifaceted positive effects for these cycles and other processes in the ecosystem. Many of the results from the examined model systems can be applied to other ecosystems as well as agricultural areas.

The Chair of Professor Wolfgang Weisser is part of the Hans-Eisenmann-Forum (HEF) for Agricultural Sciences, a Central Institute of TUM.

Media Contact
Dr. Sebastian T. Meyer
[email protected]
49-816-171-4219

Original Source

https://www.tum.de/nc/en/about-tum/news/press-releases/details/35929/

Related Journal Article

http://dx.doi.org/10.1038/s41559-020-1123-8

Tags: AgricultureBiodiversityBiologyClimate ChangeEcology/EnvironmentNaturePlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

UCLA Researchers Chart Primate Ovarian Reserve Development, Unlocking Vital Insights into Women’s Health

UCLA Researchers Chart Primate Ovarian Reserve Development, Unlocking Vital Insights into Women’s Health

August 26, 2025
Brain and Gill Kynurenine Pathway Regulation in Shrimp

Brain and Gill Kynurenine Pathway Regulation in Shrimp

August 26, 2025

Resistant Starch Boosts Gut Health in Ready Meals

August 26, 2025

Post-Disbudding Pain Alters Calves’ Play Behavior

August 26, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    147 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Genomic Insights for Glycemic Trait Drug Repurposing

New lncRNA PICSAR Drives Thyroid Cancer Progression

Transforming Patient Encounters with Relationship-Centered Care

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.