• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Solar storms could scramble whales’ navigational sense

Bioengineer by Bioengineer
February 24, 2020
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Gray whales 4.3 times more likely to strand during a cosmic burst of radio static

IMAGE

Credit: Nicholas Metheny NOAA

DURHAM, N.C. — When our sun belches out a hot stream of charged particles in Earth’s general direction, it doesn’t just mess up communications satellites. It might also be scrambling the navigational sense of California gray whales (Eschrichtius robustus), causing them to strand on land, according to a Duke University graduate student.

Many animals can sense the Earth’s magnetic field and use it like a GPS to navigate during their long migrations. However, solar storms could be disrupting that signal, said Duke graduate student Jesse Granger, who studies biophysics in the lab of biology professor Sönke Johnsen.

Earlier research has found a correlation between solar activity like sunspots and flares and stranded sperm whales, but Granger’s analysis tried to get to the bottom of what the relationship might be.

Gray whales were an ideal species to test this idea because they migrate 10,000 miles a year from Baja California to Alaska and back and they stay relatively close to the shore, where small navigational errors could lead to disaster, Granger said.

She compiled a NOAA database of gray whale stranding incidents over a period of 31 years and sifted out all the cases in which the whales were obviously sick, malnourished, injured or entangled, leaving only 186 strandings of otherwise healthy animals.

Comparing the healthy strandings data to a record of solar activity and statistically sifting out several other possible factors like seasons, weather, ocean temperatures and food abundance, Granger concluded that gray whales were 4.3 times more likely to strand when a lot of radio frequency noise from a solar outburst was hitting the Earth.

She suspects the issue isn’t that a solar storm warps the Earth’s magnetic field, though it can. It’s that the radio frequency noise created by the solar outburst does something to overwhelm the whales’ senses, preventing them from navigating altogether — as if turning their GPS off in the middle of the trip.

The likelihood that whales might be somehow tapping into the planet’s geomagnetic fields is pretty strong because landmarks are few in the open ocean, but unfortunately, researchers don’t yet know precisely how they navigate, said Granger, whose work appears Feb. 24 in Current Biology.

While her study provides more evidence for a magnetic sense, Granger said the whales may still be using other cues to make their migration. “A correlation with solar radio noise is really interesting, because we know that radio noise can disrupt an animal’s ability to use magnetic information,” she said.

“We’re not trying to say this is the only cause of strandings,” Granger said. “It’s just one possible cause.”

###

CITATION: “Gray Whales Strand More Often on Days With Increased Levels of Atmospheric Radio-Frequency Noise,” Jesse Granger, Lucianne Walkowicz, Robert Fitak, Sönke Johnsen. Current Biology, Feb. 24, 2020. DOI: 10.1016/j.cub.2020.01.028

Media Contact
Karl Leif Bates
[email protected]
919-681-8054

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2020.01.028

Tags: BiologyBiomechanics/BiophysicsGeophysics/GravityMarine/Freshwater BiologyStars/The Sun
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Seismic Analysis of Masonry Facades via Imaging

Pediatric Pharmacogenomics: Preferences Revealed by Choice Study

Genkwanin Glycosides Boost Glucose Uptake in Fat

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.