• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Tricky reaction sequence gets a major boost from a flow setup and statistics

Bioengineer by Bioengineer
February 19, 2020
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Osaka University optimize a complicated domino reaction in a flow system via machine learning to efficiently screen multiple variables, attaining high selectivity and yield of a potential biologically active compound

IMAGE

Credit: The Royal Society of Chemistry


Osaka, Japan — Despite technological advances, early drug discovery and development remain a time-consuming, difficult and inefficient process with low success rates. A team from Osaka University has discovered a possible solution for overcoming low production yields in complex reaction sequences, providing a proof-of-concept study in the successful high yield of a potential therapeutic agent.

In a study recently published in Chemical Communications, the researchers demonstrate the production of a potential drug agent using machine-learning to rapidly screen experimental conditions for a complex reaction series. This optimization approach significantly reduced the time, materials and cost required for conventional methods.

For both academic and industrial researchers, an essential step in the development of chemical reactions involves optimizing experimental conditions. This is traditionally achieved by varying one parameter and keeping the others constant–an onerous and costly process. A strategy for quickly identifying optimal parameters is machine learning, a statistical tool used in many fields, including drug discovery.

“While examining the steps of the organocatalyzed Rauhut-Currier and [3+2] annulation sequence, we first realized that a micro-mixing flow system would suppress any undesired side reactions and improve the yield of the desired biologically active spirooxindole derivative,” says senior author of the study, Hiroaki Sasai. “The Gaussian process regression (GPR) then allowed us to quickly screen different parameters and explore the optimal flow conditions for our system to maximize the product yield.”

These spirooxindole motifs, found in many biologically active molecules and natural products, have gained considerable research interest as possible antiviral drug agents. As with other drugs, making spirooxindoles results in mixtures containing mirror-image variants of the same molecule (enantiomers) with different chemical properties (e.g., drug activity vs. no activity)–the tricky part is preferentially maximizing the yield of the desired variant showing drug activity. A simplified method for achieving this feat with spirooxindoles has remained mostly out of reach until now.

Despite the complexity, selectivity and specificity of the highly efficient reaction sequence, the researchers established the reaction using a micro-mixer flow system, albeit with 49% yield. Using the optimized parameters from GPR, they then obtained the spirooxindole derivatives with three contiguous chiral centers within one minute with up to 89% yield and 98% purity of the desired mirror-image variant.

“It is challenging to predict the effect of changing each experimental parameter when developing a novel reaction without a thorough reaction optimization,” explains lead author Masaru Kondo. “However, combining tools like GPR with new synthetic methods in flow systems may simplify and streamline the drug development process for other complicated molecules, reducing cost, time and material waste.”

###

The article, “Exploration of flow reaction conditions using machine-learning for enantioselective organocatalyzed Rauhut-Currier and [3+2] annulation sequence,” was published in Chemical Communications at DOI: https://doi.org/10.1039/C9CC08526B.

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan’s leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan’s most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university’s ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Media Contact
Saori Obayashi
[email protected]
81-661-055-886

Original Source

https://www.rsc.org/journals-books-databases/about-journals/chemcomm/

Related Journal Article

http://dx.doi.org/10.1039/C9CC08526B

Tags: Algorithms/ModelsChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryPharmaceutical SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Sharp Force Limb Injuries: Swedish Autopsy Study Insights

August 7, 2025
blank

Smartphone Use and Cognitive Failures: Junior vs. Senior Students

August 7, 2025

Rising Melatonin Use in Children Sparks Global Concern

August 7, 2025

Research Shows Affordable Trial Programs Curb Youth Substance Misuse

August 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    75 shares
    Share 30 Tweet 19
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Elranatamab Outperforms UK Real-World Myeloma Treatments

    40 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microbiome Enhances Flavor in Berbassa Fermented Milk

Sharp Force Limb Injuries: Swedish Autopsy Study Insights

T. Gondii Infection Risks in Ethiopian Sheep, Goats

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.