• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists discover that human cell function removes extracellular amyloid protein

Bioengineer by Bioengineer
February 18, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Eisuke Itakura


The accumulation of aberrant proteins in the body will cause various neurodegenerative diseases. Amyloid β, one of these aberrant proteins, is a known risk factor for Alzheimer’s disease. Eisuke Itakura, an assistant professor at Chiba University, says, “Human cells have functions for maintaining homeostasis. Scientists are now actively studying the typical intracellular protein degradation systems by autophagy and proteasome, but our knowledge of how cells act on aberrant external substances is still limited.”

The research team led by Itakura gained new knowledge of the functions that human cells have for maintaining homeostasis through experiments in petri dishes. The team discovered a system in which cells could capture, degrade and remove aberrant extracellular proteins. This study will be published February 18th in the Journal of Cell Biology.

In these experiments, the team focused on Clusterin, an extracellular molecular chaperone. By developing an original proprietary cell internalization assay in which cells fluoresce when extracellular Clusterin is taken up, they established a new method for visually observing the state of proteolysis in the body (Fig 1).

Itakura’s team found that extracellular Clusterin selectively binds to aberrant proteins and forms a complex. They then observed how cells take up this complex using the fluorescence assay and genome-wide CRISPR screening. The team identified that cells lacking a gene related to the heparan sulfate receptor on the cell surface did not take up the aberrant protein-Clusterin complex. They also demonstrated that cells could take up Clusterin complex with amyloid β via the heparan sulfate receptor and that the complex was degraded in organelle lysosomes.

“Clusterin is a type of molecular chaperone that binds to immature proteins to protect them. If we can artificially develop Clusterin that easily binds to amyloid β and inject it into the body, it could be a treatment for Alzheimer’s disease,” says Itakura.

The heparan sulfate receptor was previously known to be a viral and growth factor receptor. This is the first time that scientists have demonstrated it to be an abnormal protein receptor. The research group has named this homeostasis system “the chaperone- and receptor-mediated extracellular protein degradation (CRED) pathway” and now they are planning to apply it in disease treatment through further research.

###

Reference

Eisuke Itakura, Momoka Chiba, Takeshi Murata, Akira Matsuura, “Heparan sulfate is a clearance receptor for aberrant extracellular proteins”, Journal of cell biology, Vol. 219 Issue 3, 2020, doi: https://doi.org/10.1083/jcb.201911126

Contact:

Eisuke Itakura Ph.D.

Assistant Professor

Division of Molecular and Cellular Biology, Chiba University

Phone: +81-(0)43-290-2778

e-mail: [email protected]

Media Contact:

Saori Tanaka

Research Administrator for Communications

Institute for Global Prominent Research, Chiba University

[email protected]

Media Contact
Saori Tanaka
[email protected]
81-043-290-3022

Related Journal Article

http://dx.doi.org/10.1083/jcb.201911126

Tags: BiochemistryBiologyCell BiologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Early Tuberculosis Treatment Lowers Sepsis Mortality in People with HIV

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.